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1. Introduction

1.1. Knot theory is, roughly speaking, the study of ‘knotted’ curves in space, up to
continuous deformation. One of the fundamental questions in knot theory is therefore
to distinguish between knots that cannot be obtained from each other via continuous
deformation. The key tool used to answer such questions is that of a knot invariant.

Perhaps one of the most influential and consequential knot invariants, which spurred
much of the development of modern knot theory, is the Jones polynomial. It was
discovered by Reshitikhin and Turaev ([RT]) that the Jones polynomial has connections
to and naturally arises from the representation theory of the quantum group Uq(sl2),
a deformation of the classical enveloping algebra U(sl2). Later, Khovanov constructed
a categorification of the Jones polynomial ([Kh]), thereby obtaining a strictly stronger
knot invariant which is now known as Khovanov homology. It was then shown by
Stroppel ([St]) that Khovanov homology itself arises from the categorified representation
theory of Uq(sl2). The situation can be summarised as follows:

Jones polynomial Representation theory of Uq(sl2)

Khovanov homology Categorified representation
theory of Uq(sl2)

Categorification Categorification
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1.2. In this report, we understand and make precise the key approaches leading to the
Reshitikhin-Turaev invariants and Khovanov homology, thereby relating the representa-
tion theory of quantum groups to the theory of knot invariants. The report is organised
as follows. We recall the essentials of knot theory and knot invariants in Section 2. We
consider the Khovanov homology in Section 3. We study the quantum group Uq(sl2)
and its representations in Section 4. We construct the Reshetikhin-Turaev invariants
arising from quantum groups in Section 5.

Acknowledgement: This project was conducted under the Undergraduate Re-
search Opportunities Programme in Mathematics at the National University of Singa-
pore, and supervised by Prof Bao Huanchen. I would like to thank Prof Bao for his
guidance, helpful suggestions and strong support throughout the entire project.
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2. Preliminaries on knot invariants

2.1. Links and tangles.

2.1.1. The central objects of knot theory that are of importance in our study of knot
invariants are links and tangles. Informally, a knot is the embedding of a single closed
loop in 3D space; a link is the embedding of a disjoint union of n closed loops in 3D
space; and a tangle is a ‘part’ of a link in 3D space. Each closed loop may be given an
orientation, from which we obtain oriented links and tangles.

The key point is that we consider (oriented) knots, links and tangles up to isotopy,
that is, we consider two links or tangles to be the same if there is a continuous defor-
mation in 3D space from one link/tangle to the other (so that the link/tangle does not
pass through itself).

2.1.2. Since we are studying links/tangles modulo isotopy, and in particular are only
interested in the combinatorial and algebraic structure arising from links/tangles mod-
ulo isotopy, it is conceptually more convenient (and indeed equivalent) to define them
as piecewise linear embeddings, and to define their equivalence in more discrete terms.
Accordingly, we have

Definition 2.1. (Links) A link is a disjoint, piecewise-linear, embedding of n copies
of S1 into R3. Each copy of S1 is called a component of the link. Equivalently, it
is a disjoint union of n non-self-intersecting closed polygonal arcs in R3, with each
polygonal arc a component of the link. A link is oriented if each component is given a
fixed orientation.

Figure 1. Example of link.

Definition 2.2. (∆-move) Given a link L, two consecutive vertices A,B of a component
(which is a polygonal arc) of L, and a point C in R3 such that the triangle ABC
intersects L only along the segment AB, a ∆-move on L replaces L with a new link L′

defined by removing segment AB and replacing it with segments AC,CB.



4 BRYAN WANG PENG JUN

Figure 2. Example of ∆-move.

Definition 2.3. (Equivalence) Two links L, L′ are (combinatorially) equivalent if there
is a sequence of ∆-moves bringing L to L′ in R3.

2.1.3. The informal definition of a tangle as a ‘part’ of a link gives rise to two similar
but distinct definitions of a tangle that are often used in knot theory. To avoid con-
fusion, we have chosen to call tangles of Definition 2.4 as boxed tangles, and those of
Definition 2.5 as circled tangles. This is not standard terminology, and in practice, it
will usually be clear from the context which type of tangle we are referring to, so we
will not use these terms often.

Definition 2.4. (Boxed tangles) A (boxed) tangle is a disjoint, piecewise-linear, em-
bedding of some copies of S1 and the unit interval [0, 1] into R2 × [0, 1], so that the
boundary of the copies of [0, 1] lies within R2 × {0, 1}. Each point of this boundary is
then called an endpoint of the tangle. Each copy of S1 or [0, 1] is called a component of
the link. Equivalently, it is a disjoint union of n non-self-intersecting, not necessarily
closed polygonal arcs in R2× [0, 1], with each polygonal arc a component of the tangle.

Definition 2.5. (Circled tangles) A (circled) tangle is a disjoint, piecewise-linear, em-
bedding of some copies of S1 and the unit interval [0, 1] into the unit ball, so that the
boundary of the copies of [0, 1] lies within the unit sphere. Each point of this boundary
is then called an endpoint of the tangle. Each copy of S1 or [0, 1] is called a component
of the link. Equivalently, it is a disjoint union of n non-self-intersecting, not necessarily
closed polygonal arcs in R2× [0, 1], with each polygonal arc a component of the tangle.

Figure 3. Example of boxed (left) and circled (right) tangles.

A tangle is oriented if each component is given a fixed orientation. The ∆-moves
and equivalence of tangles are defined similarly as that for links (Definitions 2.2, 2.3).
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2.1.4. Observe that a tangle with no endpoints may be viewed simply as a link and
vice versa; we will often do so later. Furthermore, we will usually consider oriented
links and tangles.

2.2. Link and tangle diagrams; Reidemeister’s theorem.

2.2.1. While we study links and tangles up to equivalence in R3, in practice, it is
usually not feasible to work with the equivalence of these objects in 3D space. For a
start, we would like to represent links and tangles using 2D diagrams. We would then
like to consider the equivalence of these 2D diagrams as representing equivalent links
or tangles, and our study of 3D links and tangles modulo equivalence is reduced to
the study of these 2D diagrams modulo equivalence of diagrams. This motivates the
following:

Definition 2.6. (Regular projection) A regular projection of a link or tangle L is a
projection of L from R3 onto R2 such that: each point of R2 which is mapped to by
more than one point of L, is mapped to by only two points of L; there are only finitely
such points; and no such point is mapped to by a vertex of a polygonal arc (component)
of L.

Informally, a regular projection is simply a representation of the link/tangle as a 2D
diagram so that the link/tangle can be unambiguously recovered from the diagram (up
to equivalence, of course). It is easy to convince oneself that a regular projection exists
for any link/tangle; the idea is that we may make suitable (small) ∆-moves so that no
more than two points map to the same point in R2.

Figure 4. Making a ∆-move to obtain a regular projection.

2.2.2. Given any link or tangle L, a regular projection allows us to obtain a 2D link or
tangle diagram if, in addition, the points which are mapped to by two points of L are
represented suitably as over- or under-crossings. Note a slight ‘abuse of notation’ in
that although we define links and tangles as polygonal arcs, the diagrams we draw often
involve smooth curves. This is merely a matter of convenience and ease of conceptual
understanding.
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Figure 5. The same link as in Figure 1, drawn as smooth curves. Note
that this also shows that we have all along been implicitly using 2D
diagrams to represent our links and tangles!

2.2.3. As mentioned, we would like to reduce our study of 3D links and tangles modulo
equivalence, to the study of these 2D link and tangle diagrams modulo equivalence of
diagrams. The following Theorem 2.7 does precisely this and is therefore of central
importance in knot theory and in our subsequent discussion.

Theorem 2.7. (Reidemeister’s Theorem) Two links/tangles are equivalent (recall (Def-
inition 2.3) that this is iff they are related by a sequence of ∆-moves), if and only if
their corresponding diagrams (under regular projection) are related by a sequence of
so-called Reidemeister moves (or R-moves), which are defined as in Figure 6. If the
links/tangles are oriented, then the set of moves is the same as in Figure 6, taken over
all possible orientations of each component involved in the move.

Figure 6. Reidemeister moves.
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Proof. (Sketch). The backward direction is intuitively straightforward, so we focus
on the forward direction. It suffices to show that each ∆-move can be realised by a
sequence of Reidemeister moves.

The idea is to consider the triangle ABC in any such ∆-move (Definition 2.2) and
the crossings contained within ABC (under the regular projection). ABC admits a
triangulation so that each piece of the triangulation contains at most one such crossing.
Since the original ∆-move can be realised by a sequence of ∆-moves corresponding to
each piece of the triangulation, it remains to verify that each ∆-move where there
is at most one crossing within the triangle ABC can be obtained by a sequence of
Reidemeister moves, which is a straightforward case verification. �

Corollary 2.8. The central consequence of Reidemeister’s theorem is the following:

links or tangles

equivalence
∼=

link or tangle diagrams

Reidemeister moves
.

In other words, our study of (3D) links and tangles is reduced to the study of (2D)
link and tangle diagrams, modulo the R-moves.

Remark 2.9. We remark here that of the three Reidemeister moves, (R2) and (R3)
appear to be more ‘tautological’ as they involve only the ‘planar’ movement of one
component across another or across a crossing, whereas (R1) appears to contain some
‘non-trivial’ content in that it removes a ‘twist’ from the diagram. This is not merely a
cosmetic difference and will play a role in our subsequent discussion, giving rise to the
notion of framed links and tangles (also known as ribbons), which are links and tangles
modulo only the relations (R2) and (R3).

2.3. Link and tangle invariants; Jones polynomial.

2.3.1. Our definition of link and tangle equivalence and the consequential Theorem 2.7
provides us a means to tell if two links or tangles are indeed equivalent. However, the
problem of greater significance in knot theory is to distinguish links and tangles; that is,
to tell if two links or tangles are not equivalent. The key tool used to answer questions
in this regard are knot invariants, or to be more precise, link and tangle invariants.

A link or tangle invariant is, roughly speaking, an assignment

f :
links or tangles

equivalence
→ S

for some set S, or equivalently, an assignment

f :
link or tangle diagrams

Reidemeister moves
→ S.

While it is easy enough to define f on link or tangle diagrams (e.g. number of
crossings), the key point is that of well-definedness: f must remain invariant under
equivalence, or under Reidemeister moves. This is precisely where the term ‘invariant’
comes from, even though f is expected to take a wide range of values for different
links/tangles.
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2.3.2. Perhaps the knot invariant of greatest significance in modern knot theory is the
Jones polynomial. Here, we define the Jones polynomial via a state-sum formulation
of the Kauffman bracket. Defining the Jones polynomial in this way also allows us
to illustrate the process of deframing, which we will employ again in the subsequent
sections.

Definition 2.10. (Smoothing) Given a crossing in an (unoriented) link/tangle diagram
D, a smoothing is a local change of the diagram by replacing the crossing as follows:

Figure 7. 0-smoothing (left) and 1-smoothing (right).

A change of the first kind is called a 0-smoothing, while that of the second kind is
called a 1-smoothing. (The choice of which is 0 and which is 1 is merely a matter of
convention.)

A complete smoothing of a link/tangle diagram D with n crossings is a diagram in
which all n crossings have been smoothed. The resulting diagram has no crossings; in
particular if D is a link diagram, the resulting diagram is a collection of closed loops
in the plane.

Definition 2.11. (States) Given an (unoriented) link/tangle diagram D with n cross-
ings labelled 1 to n, a state of D is a complete smoothing of D corresponding to one
of the 2n elements of {0, 1}n, which indicates how each of the n crossings is to be
smoothed (0-smoothed or 1-smoothed). Given an element s ∈ {0, 1}n, denote by s(D)
the corresponding completely smoothed diagram.

Definition 2.12. (Kauffman bracket, state-sum formulation) Given an (unoriented)
link diagram D with n crossings and its 2n states corresponding to the elements of
{0, 1}n, the Kauffman bracket 〈·〉 is defined by:

〈D〉 =
∑

s∈{0,1}n
qi(s)−n/2(−q − q−1)c(s(D))

where q is an indeterminate, i(s) denotes the number of 1s in s, and c(s(D)) denotes
the number of closed loops in the completely smoothed diagram s(D).

Example 2.13. Figure 8 illustrates an example in the case of the link consisting of
two interlocking loops. The diagram has n = 2 crossings and so the sum is taken over
22 = 4 states.
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Figure 8. Example of Kauffman bracket.

Remark 2.14. If D has n = 0 crossings, we adopt the convention of taking s = ∅ as the
empty smoothing and set

〈D〉 = (−q − q−1)c(D)

Remark 2.15. It is easy to verify (by considering the states s with equal i(s)) that
although the states s(D) of a link diagram D depend on a choice of ordering of the n
crossings of D, the Kauffman bracket 〈D〉 does not.

The Kauffman bracket is a priori well-defined for all (unoriented) link diagrams D.
However, the point is that we need to study how the Kauffman bracket behaves under
the R-moves.

Lemma 2.16. Given an (unoriented) link diagram D, let D′ be the link diagram ob-
tained by the disjoint addition of a single closed loop to D. Then

〈D′〉 = (−q − q−1)〈D〉

Proof. Straightforward verification. �

Lemma 2.17. (Skein relation for Kauffman bracket) Given an (unoriented) link di-
agram D and one of its crossings C, let D0, D1 be the link diagrams obtained by the
0-smoothing and 1-smoothing respectively of C. The Kauffman bracket satisfies the
following skein relation:

〈D〉 = q−1/2〈D0〉+ q1/2〈D1〉

Proof. Without loss of generality (Remark 2.15), we may suppose C is last in the order
of the n crossings of D, and the remaining n− 1 crossings, which will be precisely the
crossings of D0 and D1, are ordered the same way in D,D0, D1. For a given s ∈ {0, 1}n,
let sn denote its last element (0 or 1), and s′ ∈ {0, 1}n−1 denote the resultant when the
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last element sn is removed. We have

〈D〉 =
∑
s;sn=0

qi(s)−n/2(−q − q−1)c(s(D))

+
∑
s;sn=1

qi(s)−n/2(−q − q−1)c(s(D))

=
∑
s;sn=0

q−1/2qi(s
′)−(n−1)/2(−q − q−1)c(s

′(D0))

+
∑
s;sn=1

q1/2qi(s
′)−(n−1)/2(−q − q−1)c(s

′(D1))

= q−1/2〈D0〉+ q1/2〈D1〉.
�

Remark 2.18. Lemma 2.17 allows us to essentially translate our global Definition 2.12
of the Kauffman bracket into a local relation. This is essential as the R-moves are really
local relations on link diagrams. While it is possible (and perhaps more standard) to
take Lemma 2.17 as the definition of the Kauffman bracket, some care is needed to
show well-definedness.

Proposition 2.19. (Kauffman bracket under R-moves) The Kauffman bracket is in-
variant under (R2) and (R3). As for (R1), observe that any ‘twist’ in an (unoriented)
link diagram, as in (R1), may be uniquely positioned (under rotations of the diagram
only) so that the twist points toward the right. Then we have to consider whether the
crossing in the twist is an over-crossing or an under-crossing (going from the bottom
up). We have:

Figure 9. Kauffman bracket under (R1).

Proof. We have:
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Figure 10. Kauffman bracket under (R1) (over-crossing).

The other case for (R1) (under-crossing) is similar, with only a difference in signs.
As for (R2) and (R3), we have:

Figure 11. Kauffman bracket under (R2), (R3).

�
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2.3.3. Proposition 2.19 tells us that the Kauffman bracket is an almost-invariant of
links: it is invariant under (R2) and (R3), but under (R1) it is changed by scalar
multiplication. (It is, however, therefore an invariant of framed links, cf. Remark 2.9.)

Since that the Kauffman bracket is only changed by scalar multiplication under
(R1), one may consider adding a multiplicative factor to the Kauffman bracket which
precisely ‘cancels’ the scalar multiplication of (R1) in order to obtain a true invariant
of links.

This is not possible for unoriented links, because there is essentially only ‘one’ type
of crossing in an unoriented diagram, so there is no way to distinguish between the two
versions of (R1) which give rise to different scalars.

However, the situation is different if we consider oriented links and obtain an invari-
ant of oriented links. This is known in the knot theory literature as deframing.

Definition 2.20. (Right-handed and left-handed crossings) Given an oriented link or
tangle diagram D, and an (oriented) crossing C, the component lu which passes under
in this crossing C may be uniquely positioned, under rotations of D only, so that it
points upward in the diagram. Then the component lo which passes over in C may
point either toward the right, whence we call C a right-handed (RH) crossing, or toward
the left, whence we call C a left-handed (LH) crossing. In a diagram D, let n+(D) and
n−(D) denote the number of RH and LH crossings respectively.

Now, keeping the terminology of Proposition 2.19, we observe that if the crossing
in the twist is an over-crossing, then removing this twist under (R1) always decreases
the number of RH crossings by 1, and keeps the number of LH crossings the same,
regardless of whether the component is oriented upward or downward.

Similarly, if the crossing is an under-crossing, then removing this twist under (R1)
always decreases the number of LH crossings by 1, and keeps the number of RH crossings
the same, regardless of whether the component is oriented upward or downward.

(R2) decreases the number of crossings of each type by 1 each, while (R3) does not
change the number of crossings of either type. We therefore obtain the following:

Theorem 2.21. (Jones polynomial) Given an oriented link diagram D with underlying
unoriented link diagram D′ (obtained by ‘forgetting’ the orientation of D), the quantity

J(D) := (−q3/2)n+(D)−n−(D)〈D′〉
is an invariant of oriented links.

Proof. Follows from Proposition 2.19 and the preceding discussions. �

We conclude with a result (and a preliminary lemma which is itself interesting in its
own right) that will be useful later on when working with the Jones polynomial.

Lemma 2.22. Given any oriented link diagram D with n crossings, it is always possible
to change D into a diagram of an unlink (several disjoint closed loops) by changing
some of its over-crossings to under-crossings and vice versa (while keeping the rest of
the diagram unchanged).



KNOT INVARIANTS AND THE REPRESENTATION THEORY OF QUANTUM GROUPS 13

Proof. First identify the components ofD; it is certainly possible to change the crossings
so that the link diagram corresponds to a link in 3D space for which no two components
ever possess the same z-coordinate (z-axis perpendicular to the 2D diagram).

Now for each component, we choose a point on it (which is not a crossing) and start
‘walking’ along it in the direction of its orientation. Every time we encounter a crossing
(with itself) which we have not encountered before, change it (if need be) so that the
strand we are currently on lies under the other strand. Otherwise, if we encounter a
crossing (with itself) which we have encountered before, this means that the strand we
are currently on must lie over the other strand (by the preceding sentence), and we
leave the crossing as is. It is clear then that each component is now an unlink. �

Proposition 2.23. (‘Local’ formulation of Jones polynomial) The Jones polynomial is
uniquely defined by the following relations:

• For any diagram D of an unlink with n components (n disjoint closed loops),
we have J(D) = (−q − q−1)n;
• Given any oriented link diagram D and one of its crossing C, we have the

following local (at C) skein relation:

Figure 12. Skein relation for Jones polynomial.

Proof. There are two parts to this statement. First we need to show that the Jones
polynomial we have already defined satisfies the two stated properties. The first is
immediate; for the second, we have:

Figure 13. Proof of skein relation for Jones polynomial.
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as desired.

Now, for the uniqueness, all we need to show is that J is computable for any dia-
gram D just from the two stated properties. Everything then follows from the well-
definedness of the Jones polynomial. For this we simply induct on n, the number of
crossings in D.

For any diagram D we may, by Lemma 2.22, change it into a diagram of the unlink by
changing some number of its crossings. It is clear then that so long as we can compute
J for any diagram with fewer than n crossings, and we can compute J for any diagram
of the unlink with some number of components (this is just the first property), that we
can compute J for the diagram D by repeated application of the skein relation (second
property), which is the desired conclusion. �

Example 2.24. As an example to illustrate the proof of the preceding proposition,
suppose we want to calculate the Jones polynomial of the left most link (two inter-
locking loops) of Figure 14 below. Changing the top crossing will give us a diagram
of two disjoint closed loops, i.e. the middle link of Figure 14, which we can certainly
compute. The last link involved in the skein relation has only one crossing, that is,
one fewer crossing than our original link, which by inductive hypothesis we can also
compute. Therefore we are able to compute the Jones polynomial of our original link
(two interlocking loops) via the skein relation.

Figure 14. Computing Jones polynomial via skein relation.
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3. Khovanov homology

In our state-sum formulation of the Kauffman bracket (and hence the Jones polyno-
mial), we considered 2n states of a n-crossing link diagram and defined the Kauffman
bracket as a sum over all 2n states. With this ‘global’ approach, we did not use much
information about the states themselves.

Khovanov [Kh] obtained a link invariant, known as the Khovanov homology, which
assigns to each link diagram a chain complex of graded Z-modules or vector spaces, so
that this chain complex is homotopy invariant under equivalence of link diagrams.

In this section, we obtain the Khovanov homology via an approach involving dotted
cobordisms, first suggested by Bar-Natan in [BN]. This approach differs slightly from
Khovanov’s original approach, but we will see that we eventually recover Khovanov’s
original formulation.

The plan is as follows. In Sections 3.1, 3.2, 3.3, 3.4, we incrementally build the
‘category of cobordisms’ that we will require to define the Khovanov homology, along
the way highlighting the key considerations of this set-up. In Section 3.5 we define the
Khovanov homology, and the subsequent Sections 3.6, 3.7 are devoted to understanding
the Khovanov homology in greater detail, in particular how it behaves under the R-
moves. In Section 3.8 we do a deframing, exactly as we did with the Kauffman bracket.
Finally, Sections 3.9, 3.10 investigate the relation between the Khovanov homology and
the Jones polynomial.

In this section, all tangles are assumed to be circled tangles (Definition 2.5).

3.1. Category C (P ).

3.1.1. We would like to consider the information contained in each state, and the
possible relations between states. To that end, we view each state, which is really a
tangle diagram with no crossings, as an object in a category.

Definition 3.1. (Category C ; objects) Given a finite set of fixed endpoints P on the
unit circle, category C (P ) has as its objects tangle diagrams with no crossings, and set
of endpoints precisely P , modulo equivalence (isotopy) of diagrams. In particular, if
P = ∅, then C (∅) has as objects link diagrams with no crossings, modulo equivalence
of diagrams.

Remark 3.2. We will incrementally build our definition of C (P ) via a sequence of
definitions in Sections 3.1, 3.2, 3.3 and 3.4. The upshot is we would eventually like
C (P ) to be a graded, additive category of dotted cobordisms, over which we can define
chain complexes.

We would also like to represent relations between states.

Definition 3.3. (Category C ; morphisms) Given two objects (diagrams) D1, D2 ∈
C (P ), the set of morphisms Hom(D1, D2) is the set of cobordisms with ‘bottom’
boundary D1 and ‘top’ boundary D2, modulo isotopy (continuous deformation) in 3-
dimensional space. That is, denoting the unit disk by B, it is the set of 2-dimensional
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surfaces embedded in the 3-dimensional space (cylinder) B× [0, 1] with bottom bound-
ary precisely D1 ⊂ B × {0}, top boundary precisely D2 ⊂ B × {1}, and side boundary
P × [0, 1], modulo isotopy in 3-dimensional space.

Composition is defined by vertical stacking in the obvious manner, and the identity
morphism for each object is clear (for example, given a diagram D we may take the
cobordism D × [0, 1]).

3.1.2. Since we allow all cobordisms with the stipulated boundaries as morphisms, not
all morphisms will be of interest to us. We are particularly interested in the relation
or morphisms between adjacent states.

Definition 3.4. (Adjacent states) Given two states represented by s1, s2 ∈ {0, 1}n, we
say s1, s2 form a pair of adjacent states iff s1, s2 differ in one and only one position.
The state which contains 0 in this position is called the tail of this pair, while the other
state (which contains 1) is called the head.

Given a diagram D and smoothings D1, D2 corresponding to adjacent states s1 (tail)
and s2 (head), so that crossing C is 0-smoothed in s1 and 1-smoothed in s2, there
is always a morphism from D1 to D2 obtained by placing a saddle cobordism at the
crossing C (and the ‘identity’ surface everywhere else). Essentially, the relation between
diagrams D1 and D2 of adjacent state is that of merging two components into one, or
vice versa, with all other components unchanged.

Example 3.5. Consider the figure-eight link with one crossing represented in Figure 15,
and its two states corresponding to the 0-smoothing and 1-smoothing respectively. The
morphism in C (P ) between these adjacent states is also depicted in Figure 15; it is an
upside-down ‘pair of pants’ cobordism.

Figure 15. Adjacent states of the figure-eight link.

3.2. Chain complexes in C (P ).

3.2.1. We would like to form chain complexes of objects and morphisms in the category
C (P ). To do so, we require C (P ) to be an additive category, in order for us to have a
notion of chain complexes, and of homotopy.
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Definition 3.6. (Making C (P ) pre-additive) Henceforth, we make C (P ) a pre-additive
category by replacing each hom-set Hom(D1, D2) with the free Z-module generated by
its elements; in other words, we allow formal Z-linear combinations of morphisms in
C (P ). Composition is defined in the obvious bilinear manner, and identity remains the
same.

(Making C (P ) additive) Now that C (P ) is pre-additive, we further make it an ad-
ditive category by allowing objects to be formal (finite) direct sums of original objects
in C (P ), and morphisms therefore as matrices of original morphisms (those of Def-
inition 3.6) of the suitable dimension. Each hom-set is still a Z-module via matrix
addition, and composition is defined exactly in the obvious way via matrix multiplica-
tion. Identity morphisms are identity matrices.

Remark 3.7. Definition 3.6 provides a universal construction for making any given pre-
additive category C additive (known as the additive closure of C ). Therefore, even as
we modify the objects/morphisms of C (P ) later on, we always understand the final
category C (P ) as being additive via this process.

3.2.2. With C (P ) now additive - in particular, there is the notion of the zero morphism
in C (P ), we may now define chain complexes with objects and morphisms in C (P ),
as well as of (degree-zero) morphisms between chain complexes, in exactly the usual
way. The composition of any two successive morphisms in a chain complex is the zero
morphism in C (P ).

Definition 3.8. (Indexing of chain complexes) We adopt the convention that our chain
complexes are indexed in ascending index order; that is, our chain complex C contains
objects · · · , C−1, C0, C1, · · · and maps di : Ci → Ci+1 so that di+1 ◦ di = 0.

Given a chain complex C, let C[s] (s ∈ Z) denote the complex with same differentials
and objects C[s]r+s = Cr for all r.

We also have the notion of homotopy which is also defined in exactly the same way
as usual. For the sake of completeness, we state the definition here:

Definition 3.9. (Homotopy) Given two chain complexes C,D over C (P ) and two chain
complex morphisms f, g : C → D, we say f, g are homotopic if there exist morphisms
(in C (P )) si : Ci → Di−1 so that f i − gi = si+1di + di−1si for all i.

We say that two complexes C,D are homotopically equivalent if there exist chain
complex morphisms f, g : C → D so that fg and gf are each homotopic to the respec-
tive identity morphisms on C and D.

3.3. Grading.

3.3.1. Since each hom-set in C (P ) is a Z-module, we may make C (P ) a graded cate-
gory in the sense that each hom-set is a graded Z-module.

Definition 3.10. (Grading on morphisms) For each cobordism(morphism) S in C (P )
(i.e. the original morphisms defined in Definition 3.3), we assign a grading on S by
degS := χ(S) − |P |/2, where χ(S) is the usual Euler characteristic of the surface S.
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In this way, since each hom-set (as of Definition 3.6) is generated by all such S, each
hom-set may be viewed as a graded Z-module.

First, although we did not mention this earlier, in order for C (P ) to contain non-
trivial objects (tangle diagrams), the number of endpoints |P | must be even, so that
this is still a Z-grading.

Second, the quantity −|P |/2 is chosen such that all identity morphisms are therefore
of degree zero (each identity morphism contains |P |/2 disjoint surfaces which are each
simply ‘2D sheets’ of Euler characteristic 1).

Finally, we would like the grading of morphisms to be additive under composition.
This is easily verified using the inclusion-exclusion principle for χ and considering the
fact that each object of C (P ) (and therefore the boundary along which two cobordisms
‘meet’ in their composition) is a collection of |P |/2 embeddings of [0, 1] and some
number of closed loops (S1), which therefore has Euler characteristic |P |/2.

Definition 3.11. (Grading on objects) Henceforth, we introduce a grading shift on
the objects of C (P ), by replacing the objects D of C (P ) by (formal) objects D{d} for
all d ∈ Z, so that D is identified with D{0} and there is a Z-action (d,D) 7→ D{d}.
Each hom-set Hom(D1{d1}, D2{d2}) is exactly equal (as a Z-module) to the original
hom-set Hom(D1, D2), but with all gradings increased by (d2− d1). It is easily verified
that gradings are still additive under composition, and identities are still of degree zero.

Example 3.12. Observe that the saddle or ‘pair of pants’ cobordism between any two
adjacent states, as given in Example 3.5, has grading −1. It is easily verified that this is
always true for the saddle cobordism between adjacent states, even in tangle diagrams.

Remark 3.13. Now that we have a grading, we will want all the meaningful morphisms
that we talk about (i.e. differentials, chain morphisms, homotopies) to all be of degree
zero. In the subsequent discussion we will need to verify or put in special effort to make
this happen wherever possible.

Remark 3.14. The philosophical reason for introducing gradings will become clear in
Section 3.10; specifically, Lemma 3.37. Roughly speaking, multiplication by the poly-
nomial indeterminate q corresponds to grading shift.

3.4. Dotted cobordisms.

3.4.1. Now C (P ) is a graded, additive category over which we can form chain com-
plexes. However, C (P ) contains as morphisms all cobordisms without discrimination
(cf. Section 3.1.2). In other words, C (P ) is still too general to produce any meaningful
theory.

One of the key properties of the Kauffman bracket which makes it meaningful is
the ability to ‘factor out’ single disjoint closed loops as scalars, cf. Lemma 2.16. We
essentially have the (local) relation

〈 〉 = (−q)〈∅〉+ (−q)−1〈∅〉

where ∅ represents the (locally) empty diagram.
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In the same spirit, we would also like to have a local relation in C (P )

∼= ∅{1} ⊕ ∅{−1}

where the isomorphism is in the category C (P ). We would also like the isomorphisms
involved to be of degree zero, since C (P ) is graded.

Now, the cap morphism → ∅ is of degree 1, so that the cap morphism →
∅{−1} is of degree 0. However, it is impossible to obtain in this way a degree 0 cap

morphism → ∅{1}. This motivates the following:

Definition 3.15. (Dotted cobordisms) Henceforth, we introduce a dotting on the mor-
phisms(cobordisms) of C (P ), as follows. Each cobordism may now carry dots on each
of its connected components, modulo free movement of each dot along each connected
component. Every dot lowers the grading of the cobordism by 2.

Now, we naturally obtain a singly-dotted cap morphism → ∅{1} of degree 0.

Similarly, we have a singly-dotted cup morphism ∅{−1} → and an undotted cup

morphism ∅{1} → , all of degree 0. The situation is depicted in Figure 16. Note
here we do not draw in the boundary cylinder as we have done before, to emphasise
the fact that these are local relations.

Figure 16. Dotted cobordisms(morphisms) of a single closed loop.

Now, we would like these morphisms to be precisely the isomorphisms (in either
direction) that we are looking for. To that end, we require:
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Figure 17. Dotted isomorphisms.

This motivates the following.

Definition 3.16. (Relations on dotted cobordisms) Recall that each hom-set of C (P )
forms a (free) Z-module. We now replace each hom-set by its quotient (as Z-module),
modulo the following local relations:

Figure 18. Local relations for C (P ).

The last of these relations is often called the neck-cutting relation as it allows us to
‘cut’ a cylindrical component open into two separate components.

First, the notation of the above local relations means precisely the following: we
take quotient by the Z-(sub)module R generated by: all cobordisms with a single
sphere as one of its components; all cobordisms with a component with at least two
dots; the difference of all cobordisms differing by precisely the disjoint addition of a
single dotted sphere; the difference between all cobordisms with a (locally) cylindrical
component and the sum of the two cobordisms obtained from the local change of the
neck-cutting relation.

Second, we need to check the well-definedness of composition. But this follows
directly because we mod out by local relations only: more precisely, if f, g are morphisms
with f − g ∈ R, then for any morphism h, fh − gh = (f − g)h ∈ R and hf − hg =
h(f − g) ∈ R.
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Third, we need to check that the gradings are preserved so that each hom-set is
still a graded Z-module. But this directly follows because each local relation is degree-
homogeneous: for example, a singly-dotted sphere is of degree zero, and similarly for
the neck-cutting relation.

Finally, we make C (P ) additive as in Remark 3.7.

Lemma 3.17. (cf. Lemma 2.16) In C (P ), we have

∼= ∅{1} ⊕ ∅{−1},

with explicit (degree-zero) isomorphisms given in Figure 16.

Proof. Follows from the preceding discussion. �

3.5. Khovanov’s homology for links and tangles.

3.5.1. Our definition of C (P ) and of chain complexes over C (P ) is now complete. We
are now in a position to define our invariant on (unoriented) link and tangle diagrams,
similarly to Definition 2.12.

Definition 3.18. (Khovanov homology, unoriented case) Given an unoriented tangle
(or link) diagram D with n crossings and set of endpoints P , let JDK be the (bounded)
chain complex defined as follows.

We keep the notations of Definition 2.12 and note in addition that for each state
s ∈ {0, 1}n, s(D) is an object in C (P ).

For all 0 ≤ r ≤ n, define

JDKr :=
⊕

s;i(s)=r

s(D){r}

as an object in the (additive) category C (P ) (with grading shift by r). (For r < 0 and
r > n, set JDKr to be the empty object (empty direct sum) in C (P ).)

Let us now define the differential, dr : JDKr → JDKr+1 for all 0 ≤ r < n. (For other
r, we certainly take the zero morphism.) Recall that this is essentially a matrix of
morphisms(cobordisms) between the direct summands of JDKr and JDKr+1, and so we
want to specify the morphism for each pair of direct summands:

For every two direct summands s1(D) and s2(D) (i(s1) = r, i(s2) = r + 1), if s1, s2

are not adjacent states, then take the zero morphism. Otherwise, if they are adjacent
states (then necessarily s1 is the tail and s2 the head), and take as morphism the
saddle cobordism described in Example 3.5. In addition, suppose s1, s2 differ in the
jth position. Then if there are an odd number of 1s in both s1 and s2 before the jth
position, we take instead the negative of the saddle cobordism (recall our morphisms
are formal Z-linear combinations).

First, by the remark in Example 3.12, all our morphisms thus defined are (homoge-
neous) of degree zero. Second, we need dr+1 ◦ dr = 0, and it is straightforward to see
that the choice of signs for the saddle cobordisms ensures this. Essentially all we need
to consider are states s1, s2, s3, s4 with i(s1) = r, i(s2) = i(s3) = r + 1, i(s4) = r + 2,
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such that s2 differs from s1 only in the ith position, s3 differs from s1 only in the jth
position, and s4 differs from s1 only in the ith and jth positions. The composition
cobordism s1 → s2 → s4 is equal (up to isotopy) to the composition s1 → s3 → s4, but
with opposite signs.

Example 3.19. Figure 19 illustrates an example in the case of the link consisting of
two interlocking loops. Note the grading shifts to ensure that each saddle cobordism is
of degree zero, and the signs on the saddle cobordisms to ensure that their composition
is zero.

Figure 19. Example of Khovanov homology.

3.6. Tangles as part of links; Tensor product of complexes.

3.6.1. We now have a well-defined chain complex JDK for each (unoriented) tangle
diagram D.

However, as in Remark 2.18, we would like to translate our global definition of the
Khovanov homology into something locally tractable, since we want to study how JDK
behaves under the R-moves, and the R-moves are really local relations.

Definition 3.20. (Local part of link diagram) Given a link diagram D, let Γ be a
simple closed loop (which we often view as just a circle, up to isotopy), with interior
I (and exterior Ic), whose intersection with D is a finite subset of points P , none of
which are crossings of D. Further suppose D does not intersect Γ tangentially. Then
D ∩ I is called a local part of D (with respect to Γ) and may be viewed as a tangle
diagram with endpoints P , in particular, an object of C (P ).

Furthermore, D∩Ic may also be viewed as a tangle diagram and thus an object C (Q)
for some Q. While this may be intuitively clear from our informal notion of tangles, we
make this more precise as follows. First, we may always consider a (crossing-preserving)
isotopy of the 2D diagram D (not isotopy of links or tangles), so that all crossings of
D ∩ Ic are brought into another (disjoint from Γ) disk Γ′ with interior I ′, and D
intersects Γ′ (again, non-tangentially) at some finite set of points Q. Then D∩ I ′ is the
object of C (Q) under consideration, after fixing the portion of D outside I and I ′. An
example is given in Figure 20.
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Figure 20. Viewing D ∩ Ic as an object of C (Q).

Having fixed the portion of D outside Γ and Γ′, as well as fixing Γ and Γ′, we now
observe that D can be recovered uniquely from D∩ I and D∩ I ′. In other words, every
choice of two tangle diagrams D1 ∈ C (P ) and D2 ∈ C (Q) gives rise to a unique link
diagram by embedding D1 in Γ and D2 in Γ′.

Definition 3.21. (‘Tensor’ product of diagrams) As above, fix the portion of D outside
Γ and Γ′, as well as fix Γ and Γ′. For any two tangle diagrams D1 ∈ C (P ) and
D2 ∈ C (Q), denote by D1 ⊗D2 the link diagram obtained by embedding D1 in Γ and
D2 in Γ′. We also extend ⊗ to direct sums of diagrams (objects) in C (P ) and C (Q) in
the obvious manner.

Observe also that for any two morphisms(cobordisms) f ∈ C (P ) and g ∈ C (Q),
we may form f ⊗ g by embedding the cobordisms f, g within Γ × [0, 1] and Γ′ × [0, 1]
respectively, and taking the identity surface everywhere else. There is also the obvious
extension of ⊗ to matrices of morphisms which is compatible with the extension of ⊗
to direct sums of objects.

The other key point is that all crossings of D are contained within Γ and Γ′. In par-
ticular, a (complete) smoothing of D is in correspondence with (complete) smoothings
of D ∩ I and D ∩ I ′.

Lemma 3.22. Suppose D1 := D∩I has n1 crossings and D2 := D∩I ′ has n2 crossings,
and the ordering of crossings in D is such that the crossings in D ∩ I are ordered first.
For each state s ∈ {0, 1}n, let s1 ∈ {0, 1}n1 , s2 ∈ {0, 1}n2 correspond to the first n1 and
last n2 positions of s respectively. Then

s(D) = s1(D1)⊗ s2(D2).

Proof. Obvious. �

The last point that we have yet to consider is the grading. We would certainly like to
define ⊗ so that the grading and grading shifts are additive with respect to it. But since
we have already explicitly defined the grading and ⊗ on cobordisms, this is something
we need to check.
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Lemma 3.23. (Additivity of grading with respect to ⊗) Suppose f ∈ C (P ) and g ∈
C (Q) are cobordisms of respective degree d1, d2. Then f ⊗ g ∈ C (∅) has degree d1 + d2.

Proof. Observe that the portion of D outside Γ and Γ′ that we previously fixed is really
a collection of (|P |+ |Q|)/2 embeddings of [0, 1], and so their identity surface is really
a collection of (|P | + |Q|)/2 ‘2D sheets’ which will be attached to f, g along |P | + |Q|
boundaries of the form [0, 1]. Therefore

χ(f ⊗ g) = χ(f) +χ(g) + (|P |+ |Q|)/2− (|P |+ |Q|) = (χ(f)− |P |/2) + (χ(g)− |Q|/2),

as desired. �

With Lemma 3.23, we are assured that ⊗ is well-defined with respect to the grading.

Definition 3.24. We extend ⊗ to grade-shifted objects in the obvious additive manner,
so that the grading of morphisms of grade-shifted objects is also additive under ⊗.

3.6.2. Given D and a local part D ∩ I, we would like to study how JDK changes when
D ∩ I (locally) changes. Then, rather than considering relations between entire JDK,
we can consider relations between local JD ∩ IK. We hence want to consider first the
relation between JDK and JD ∩ IK (and therefore by the symmetry of our preceding
discussion, also the relation between JD ∩ I ′K).

The preceding discussion (in particular Lemma 3.22) is strong indication that we
should view JDK as the usual tensor product of complexes JD ∩ IK and JD ∩ I ′K. We
keep the notations of Lemma 3.22.

Proposition 3.25. JDK is the “tensor product” of complexes JD1K and JD2K, in the
following (usual) sense: JDK is the “total complex” of the “double complex” formed by
JD1K and JD2K, as in the following picture, where d1, d2 denote the respective differen-
tials in JD1K and JD2K:

· · · · · · · · ·

· · · JD1K
p−1 ⊗ JD2K

q−1 JD1K
p−1 ⊗ JD2K

q JD1K
p−1 ⊗ JD2K

q+1 · · ·

· · · JD1K
p ⊗ JD2K

q−1 JD1K
p ⊗ JD2K

q JD1K
p ⊗ JD2K

q+1 · · ·

· · · JD1K
p+1 ⊗ JD2K

q−1 JD1K
p+1 ⊗ JD2K

q JD1K
p+1 ⊗ JD2K

q+1 · · ·

· · · · · · · · ·

dp−1
1 ⊗id

id⊗(−1)p−1dq−1
2

dp−1
1 ⊗id

id⊗(−1)p−1dq2

dp−1
1 ⊗id

dp1⊗id

id⊗(−1)pdq−1
2

dp1⊗id

id⊗(−1)pdq2

dp1⊗id
id⊗(−1)p+1dq−1

2 id⊗(−1)p+1dq2

Then JDK has objects formed by the usual ‘diagonal direct sums’ of the total complex

JDKr =
⊕
p+q=r

JD1K
p ⊗ JD2K

q
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and differentials obtained accordingly as in the picture.

We denote this chain complex by JD1K⊗ JD2K. In other words, JDK = JD1K⊗ JD2K.

Proof. That the objects coincide follows from Lemma 3.22, that ⊗ commutes with ⊕,
and the additivity of grading shift over ⊗.

As for the differentials, the key point is this: for each state s ∈ {0, 1}n with i(s) = r,
i(s1) = p, i(s2) = q, consider all adjacent states s′ with i(s′) = r + 1 and similarly
define s′1 ∈ {0, 1}n1 , s′2 ∈ {0, 1}n2 . Then we must have either i(s′1) = p + 1, i(s′2) = q,
or i(s′1) = p, i(s′2) = q + 1. Conversely, any two states s′1 ∈ {0, 1}n1 , s′2 ∈ {0, 1}n2 with
i(s′1) = p+ 1, i(s′2) = q, or i(s′1) = p, i(s′2) = q+ 1, define an adjacent state s′ = s′1 + s′2
of s.

In the former case, then the morphism s→ s′ in JDK is precisely the tensor product
(s1 → s′1) ⊗ id of morphisms in JD1K, JD2K. If the latter, then the morphism is id ⊗
(−1)p(s2 → s′2). (Recall how signs are placed on our cobordisms.) It is straightforward
then to see that the differentials coincide. �

To be complete, we record the following easily-verified fact.

Lemma 3.26. (Additivity of grading shift and height shift) Grading shifts on com-
plexes (all objects grade shifted by the same amount) and height shifts on complexes are
additive with respect to ⊗.

Proof. The additivity of grading shift follows from that for objects, while the additivity
for height shift is obvious. �

3.6.3. The preceding discussion tells us that we are dealing with nothing but the usual
tensor product of complexes; in particular, we can apply almost exactly all the usual
theory of homological algebra unchanged.

Definition 3.27. (Tensor product of chain morphisms) Suppose D1, D
′
1, D2, D

′
2 are

tangle diagrams (with same set of endpoints P ) and JD1K, JD
′
1K, JD2K, JD

′
2K their corre-

sponding complexes, and link diagrams D = D1⊗D2, D
′ = D′1⊗D′2 with JDK = JD1K⊗

JD2K, JD
′K = JD′1K ⊗ JD′2K. Suppose also f : JD1K → JD′1K, g : JD2K → JD′2K are chain

complex morphisms (cf. Section 3.2.2). Then the tensor product f ⊗ g : JDK→ JD′K is
defined so that (f ⊗g)r sends JD1K

p⊗ JD2K
q to JD′1K

p⊗ JD′2K
q via the morphism fp⊗gq

(for all p+ q = r).

Lemma 3.28. (Additivity of grading with respect to ⊗) Suppose f and g are chain
morphisms of respective graded degree d1, d2. Then f ⊗ g has degree d1 + d2.

Proof. Follows from Lemma 3.23. �

Lemma 3.29. (Homotopy equivalence of tensor product) Keeping the notations of
Definition 3.27 with D2 = D′2, suppose f1, f2 : JD1K → JD′1K are homotopic chain
morphisms. Then f1 ⊗ id, f2 ⊗ id : JDK→ JD′K are homotopic. (cf. Definition 3.9)
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Proof. Define morphisms s′r : JDKr → JD′Kr−1 by mapping JD1K
p⊗ JD2K

q to JD′1K
p−1⊗

JD2K
q via the morphism sp ⊗ id for all p + q = r. Then (f1 ⊗ id)r − (f2 ⊗ id)r maps

JD1K
p ⊗ JD2K

q to JD′1K
p ⊗ JD2K

q via

(fp1 − f
p
2 )⊗ id

= (sp+1dp1 + d′p−1
1 sp)⊗ id

=
(

(sp+1 ⊗ id)(dp1 ⊗ id) + (sp ⊗ id)(id⊗ (−1)pdq2)
)

+ (d′p−1
1 ⊗ id + id⊗ (−1)p−1dq2)(sp ⊗ id)

− sp ⊗ (−1)pdq2 − s
p ⊗ (−1)p−1dq2

= s′r+1dr + dr−1s′r.

�

Corollary 3.30. (Homotopy equivalence of tensor product) Keeping the notations of
Definition 3.27 with D2 = D′2, suppose f : JD1K → JD′1K is a homotopy equivalence
between JD1K, JD

′
1K with inverse g : JD′1K → JD1K (such that fg and gf are each ho-

motopic to the respective identity morphisms). Then f ⊗ id is a homotopy equivalence
between JDK, JD′K (with inverse g ⊗ id). Observe also that if f is of degree zero, then
f ⊗ id is also of degree zero.

Proof. Immediate from Lemma 3.29. �

3.7. Invariance of J·K under R-moves.

Corollary 3.30 is the key tool which therefore allows us to reduce our study of J·K
modulo the R-moves to the study of J·K on the local parts (tangles) involved in each
R-move. In this section we aim to do just that.

3.7.1. There is one point that we should first address and that is the order of crossings
in the definition of J·K, cf. Remark 2.15.

Lemma 3.31. J·K is homotopy invariant under a change in the order of crossings.

Proof. Because permutations are generated by transpositions, it suffices to consider
the case where two adjacent crossings are transposed. Essentially the only change that
results is a sign flip on all morphisms from states of the form · · · 01 · · · → · · · 11 · · · or
· · · 10 · · · → · · · 11 · · · . But then we have an isomorphism between the two complexes
by mapping all states of the form · · · 11 · · · to themselves via −id, and all other states
via id. �

3.7.2. Let us now study how J·K behaves under each R-move.

We begin first with a (somewhat standard) lemma that we will use to simplify com-
plexes up to homotopy, which we will henceforth call the ‘cancellation lemma’. The
key idea is to ‘cancel’ isomorphisms which appear within the complex up to homotopy.
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Lemma 3.32. (‘Cancellation lemma’) Given the following complex Ω over C (P ):

· · · A B ⊕ C D ⊕ E F · · ·

(
a

b

) (
φ d

c e

) (
f g

)

where φ : B → D is an isomorphism, and each of A,B,C,D,E, F are (finite)
direct sums of objects in C (P ), so that the morphisms are each block matrices of the
appropriate dimension. Then we have the following isomorphism of complexes

· · · A B ⊕ C D ⊕ E F · · ·

· · · A B ⊕ C D ⊕ E F · · ·

id

(
a

b

)

(
id φ−1d

0 id

)

(
φ d

c e

)

(
id 0

−cφ−1 id

)

(
f g

)

id

(
0

b

) (
φ 0

0 e−cφ−1d

) (
0 g

)

This second complex has a direct summand

0 B D 0
φ

which is homotopic to the zero complex, and so the original complex Ω is homotopic to
the complex

· · · A C E F · · ·
b e−cφ−1d g

That is, we have cancelled the isomorphism φ : B → D, up to a change in morphism
C → E. If all morphisms are degree zero then all isomorphisms and homotopies are
also degree zero.

Proof. Each part of the lemma is a straightforward verification. �
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3.7.3. Under (R1), as in Proposition 2.19, we consider two cases. In the over-crossing
case, we consider the complex and degree-zero isomorphism (by the key Lemma 3.17).

Figure 21. Complexes for (R1). Here we include all the morphisms in
full for illustration.

Now, cancelling the morphism marked ‘isomorphism’ by Lemma 3.32, we see that
the second complex is degree-zero homotopic to the single term complex but with a
grading shift of −1. We obtain similarly the relation for the under-crossing case. In
other words, we have:

Figure 22. Complexes under (R1).
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3.7.4. For (R2), exactly the same techniques apply as in (R1). For brevity, we will
omit the cobordisms which can be inferred from our pictures (one may just bear in
mind that all cobordisms, isomorphisms and homotopies are degree zero).

Figure 23. Complexes under (R2).
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3.7.5. Under (R3), the situation is significantly more complex. While exactly the
same techniques apply, the key issue we have to deal with is that the isomorphisms we
want to cancel by Lemma 3.32 appear in the ‘middle’ of our complexes. Whereas in
(R1) and (R2) we did not have to worry about the change in morphism C → E that
occurs in Lemma 3.32, because either C = 0 or E = 0 (and thus we could ‘cancel’ the
isomorphism without further comment), this is not the case in (R3), and we will have
to do some computations regarding C → E. However, the essential idea is still exactly
the same as that for (R1) and (R2).

Since we have to deal with the actual (saddle) cobordisms that occur, we introduce
some notation. First, observe that all the tangle diagrams we will ever deal with under
(R3) have exactly |P | = 6 endpoints, so we fix these 6 points on a circle and represent
all tangle diagrams in this circle. Now each saddle cobordism will involve 4 of these
6 points, with two components in the source and two components in the target. Our
notation for tangle diagrams and saddle cobordisms is then largely self-explanatory
from the following example:

Figure 24. Example of notation.

Now we deal with each of the two complexes that arise from either side of (R3)
separately. We have
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Figure 25. One side of (R3).
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Figure 26. Other side of (R3). Note the rearrangement of direct sum-
mands in the height 2 object of the second complex still gives rise to an
isomorphic complex (via a permutation matrix).
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so that the two complexes are each homotopic to isomorphic complexes (differing
only in sign on the first row of the 2× 2 morphisms e− cφ−1d) and thus to each other
(with no height or grading shifts needed).

3.8. Deframing.

3.8.1. The situation now is as follows. Under (R1-3), J·K is not homotopy invariant,
but is homotopy invariant up to height and grading shifts. This tells us that we may
be able to obtain a true invariant of oriented links via the process of deframing, exactly
as in Section 2.3.3.

We can summarise the situation as follows: we have degree-zero homotopy equiva-
lences

Figure 27. Summary of homotopy equivalences under (R1-3).

Furthermore, n+, n−, grading shifts and height shifts are all additive under⊗ (Lemma 3.26).
Consequently, we finally obtain the following.

Theorem 3.33. (Khovanov homology) Given an oriented link diagram D with under-
lying unoriented link diagram D′ (obtained by ‘forgetting’ the orientation of D), the
quantity

Kh(D) := JD′K[−n−(D)]{n+(D)− 2n−(D)}
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is an invariant of oriented links.

Proof. Follows from the preceding discussions and Figure 27. �

3.9. Obtaining a computable invariant.

3.9.1. We would ideally like to have computable link invariants. Our current formu-
lation of Kh(D) suffers from two problems in this regard: first, it is defined over the
abstract category C (P ); second, it is in general not so easy to compute homotopy.

Ideally, one would like to work over an abelian category of, say, (graded) modules,
so that we may take homology, whose invariance would follow from that of homotopy.

To do so, we will need to have a functor from our category C to our desired abelian
category. Our invariant then becomes a chain complex over this abelian category, and
homotopy invariance is preserved, from which invariance of homology groups follows.

Furthermore, since we are interested only in obtaining a link invariant (the Jones
polynomial is defined only for links), we need only define our functor on C (∅). Homo-
topy invariance is still preserved since our previous results imply homotopy invariance
within C (∅) for links.

Now, observe that the hom-sets in our category C are all, by construction, graded
Z-modules. The most natural choice for our functor is therefore

Definition 3.34. We define our functor F from C (∅) to the category of graded Z-
modules as follows. For each object D ∈ C (∅), we set F (D) = Hom(∅, D) (where
∅ is the empty object, or empty diagram). Then there is only one natural choice
for the morphisms in C (∅) and that is composition (on the left): for each morphism
φ : D1 → D2 in C (∅) we set F (φ) = (f 7→ φ ◦ f) for all f ∈ Hom(∅, D1).

We would now like to look at the structure of the graded Z-modules thus obtained.
Observe that each object D ∈ C (∅) is nothing but a collection of disjoint closed loops
(since it is a smoothing of a link diagram). Therefore, by application of the neck-cutting
relation (Definition 3.16), we can reduce any morphism (cobordism) in Hom(∅, D) to
nothing but (a sum of) cobordisms where to each closed loop in D corresponds a disk
(or a cup, if you like, since we usually present our morphisms as going from the bottom
up) which is either undotted or dotted.

Now, an undotted disk is of degree 1 and a dotted disk is of degree −1. We therefore
have

Lemma 3.35. If D ∈ C (∅) is a collection of n disjoint closed loops, then F (D) is as
a graded Z-module isomorphic to the n-fold tensor product of the free graded Z-module
V0 with two generators v+, v− of homogeneous degree 1 and −1 respectively.

Proof. The idea is as in the preceding discussion. �

One can then compute what the saddle cobordisms (Example 3.5) should map to
under F . We will not go into the details here, as we are not so much interested in the
details of this formulation as much as we would like to understand its relation to the
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Jones polynomial. The upshot is that we can recover Khovanov’s original formulation
of his homology invariant defined over graded Z-modules in this way.

3.10. Decategorification; Jones polynomial.

In what sense is the Khovanov homology a categorification of the Jones polynomial?
Very roughly speaking, categorification is the process of realising a ‘basic’ structure
(sets, groups, etc.) as being derived from the higher structure of a category.

For example, the finite-dimensional vector spaces over some field forms a category.
However, since we are really only interested in objects up to isomorphism when working
within a category, we know also that up to isomorphism the finite-dimensional vector
spaces are completely ‘parameterised’ by the non-negative integers, i.e. by their dimen-
sion. Therefore, in this rough sense, the category of finite-dimensional vector spaces
categorifies the set, or group of integers, and conversely, decategorifying the category
of finite-dimensional vector spaces ‘recovers’ the set or group of integers.

Of course, we would like to have at least some precise notion of what it means
to ‘decategorify’ a category. Because, as mentioned, we are looking at objects up to
isomorphism, the right notion to consider is that of the Grothendieck group of an
(abelian) category.

Definition 3.36. (Grothendieck group of an abelian category) Let C be any abelian
category. The Grothendieck group K(C) is the free abelian group generated by the
isomorphism classes of the objects of C, denoted [A] for each object A ∈ C, modulo
the following relations: for each short exact sequence 0→ A′ → A→ A′′ → 0, we have
the relation [A] = [A′] + [A′′].

Lemma 3.37. The Grothendieck group of the category of finite-dimensional graded
vector spaces (over some field, say Q) is isomorphic to Z[q, q−1].

Proof. Just as the finite-dimensional vector spaces are completely ‘parameterised’ by
the non-negative integers, i.e. by their dimension, the finite-dimensional graded vector
spaces are completely ‘parameterised’ by their graded dimension. �

Combining Definition 2.12, Lemmas 3.35 and 3.37, it is clear now how to recover
the Jones polynomial from the Khovanov homology: after tensoring with a suitable
field (say Q), the alternating sum of the graded dimensions of the objects in our chain
complex recovers the Kauffman bracket, which combined with our deframing process
for both invariants, recovers the Jones polynomial. But the alternating sum of graded
dimensions of objects is also the alternating sum of graded dimensions of homology
groups, or equivalently it is the Euler characteristic of our chain complex (with re-
spect to the Euler-Poincaré mapping of taking graded dimensions). Consequently, the
Khovanov homology is, in the sense we have defined, a categorification of the Jones
polynomial.

Remark 3.38. Why should the Euler characteristic be the right notion of decategori-
fication, given a chain complex? Roughly speaking, the Grothendieck group we have
constructed is in fact the universal Euler-Poincaré mapping with respect to isomor-
phism classes of objects in C.
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4. The quantum group Uq(sl2)

In the preceding sections, we have shown how an approach to the Kauffman bracket
(Jones polynomial) can extend to the Khovanov homology, and how the Khovanov
homology can reproduce the Jones polynomial. However, we have not shown how
the Jones polynomial may possibly arise beyond knowing beforehand its formulation
(commonly in terms of skein relation).

The key idea is that we want to produce knot invariants in a more motivated manner,
by starting with the three Reidemeister moves and formulating them as (algebraic)
relations that are to be satisfied, rather than formulating the knot invariants first and
then checking them against the three R-moves.

In this section and the next, we will consider how the Jones polynomial can naturally
arise from representations of the so-called quantum group Uq(sl2). We will do so via
an approach of Reshitikhin-Turaev ([RT]) (and in fact this approach extends more
generally for any (complex) semisimple Lie algebra g), and in the process show also
how this leads naturally to the setting of the coloured tangles which they originally
considered.

4.1. Preliminaries.

In order to have a fuller picture of the setting, let us begin with some preliminaries
from abstract algebra. Fix a ground field k.

4.1.1. There are several equivalent ways to view the notion of an algebra over the field
k. Here, we fix a point of view that will be most useful to us, for reasons which will
come clear.

Definition 4.1. An algebra (A,µ, η) over k is a vector space over k equipped with a
bilinear map µ : A ⊗ A → A (the ‘multiplication’) and a linear map η : k → A (the
‘unit’), so that the multiplication is associative (i.e. the following diagram commutes):

A⊗A⊗A A⊗A

A⊗A A

id⊗µ

µ⊗id

µ

µ

and the unit is compatible with the vector space structure (i.e. the following diagrams
commute):

k ⊗A A⊗A

A

can

η⊗id

µ

A⊗ k A⊗A

A

can

id⊗η

µ
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where can is the canonical identification of k ⊗A with A (as vector spaces).

Given two A-modules M1,M2, we would like to form their tensor product M1 ⊗M2

which is also an A-module. However, with no other conditions on A, M1⊗M2 can only
be made an (A ⊗ A)-module. In order to make M1 ⊗M2 an A-module, we therefore
need an algebra morphism ∆ : A→ A⊗A so that a ∈ A acts on m1 ⊗m2 ∈M1 ⊗M2

as ∆(a). Furthermore, we naturally want also for ⊗ to satisfy associativity; that is,
(M1⊗M2)⊗M3 should be naturally isomorphic toM1⊗(M2⊗M3) (via (m1⊗m2)⊗m3 7→
m1 ⊗ (m2 ⊗m3). Therefore ∆ should satisfy some sort of ‘associativity’ condition.

We also want the ground field k to act as a ‘unit’ A-module; so k should have an
A-module structure and k⊗M (resp. M⊗k) should be identified with M . We therefore
need an algebra morphism ε : A → k so that a ∈ A acts on k as (multiplication by)
ε(a). This leads to the following:

Definition 4.2. A bialgebra (A,µ, η,∆, ε) over k is an algebra over k equipped with
an algebra morphism µ : A⊗A→ A (the ‘comultiplication’) and an algebra morphism
ε : A→ k (the ‘counit’), so that the comultiplication is coassociative (i.e. the following
diagram commutes):

A A⊗A

A⊗A A⊗A⊗A

id⊗∆

∆⊗id

∆

∆

and the counit satisfies (i.e. the following diagrams commute):

k ⊗A A⊗A

A

ε⊗id

can
∆

A⊗ k A⊗A

A

id⊗ε

can
∆

where can is the canonical identification of k ⊗A with A (as vector spaces).

Remark 4.3. Observe that the conditions satisfied by ∆, ε are dual to that of µ, η in that
the arrows in the respective commutative diagrams are systematically reversed. There
is accordingly a notion of a coalgebra A which has only linear maps ∆, ε (satisfying the
same conditions). A bialgebra is then both an algebra and a coalgebra such that their
structures are compatible, i.e. ∆ and ε are algebra morphisms.

Remark 4.4. In the case of vector spaces V,W , we know that V ⊗W,W ⊗V are canon-
ically isomorphic via the flip τ : v ⊗w 7→ w ⊗ v. In general, as long as the bialgebra A
is cocommutative, i.e. the following diagram commutes (cf. the corresponding diagram
for commutative multiplication µ)



38 BRYAN WANG PENG JUN

A A⊗A

A⊗A

∆

∆

τ
,

then V ⊗ W,W ⊗ V are canonically isomorphic as A-modules via the flip. We
will see later that, while counter-intuitive at first glance (as we are forgoing a rather
natural condition), this is in fact undesirable for producing (non-trivial) knot invariants,
because the flip satisfies τ2 = id. One of the crucial ideas, however, is that we will still
want to have (natural) isomorphisms between V ⊗W,W ⊗ V for any A-modules V,W ,
just not via the flip. In fact, this is one of the motivating reasons for the introduction
of quantum groups - to produce (interesting) non-commutative, non-cocommutative
bialgebras.

Working with ∆ may in general be slightly tricky in practice because ∆(a) is an
element of A⊗A. To ease things, we fix here the following notation, which is attributed
to Sweedler:

Definition 4.5. (Sweedler’s notation) For A a bialgebra and a ∈ A, we denote ∆(a) =∑
(a) a

′ ⊗ a′′. Where there is no ambiguity, we will usually drop the subscript (a).

We would like to go one step further and put, for any A-module M , an A-module
structure on M∗ (its dual as vector spaces). We can consider, for a linear endomorphism
S on A, an action of a ∈ A on M∗ by sending f 7→ (m 7→ f(S(a)m)). In order for this
to be an A-action (satisfy associativity) we need for S to be an anti-homomorphism,
that is, S(a1a2) = S(a2)S(a1) for a1, a2 ∈ A.

However, this alone is not sufficient. As a minimal first step, with the introduction
of M∗ as an A-module, we would also like the simplest canonical maps involving M∗,
that is, the evaluation and the coevaluation, to also be A-linear.

In order for the evaluation evM : M∗ ⊗M → k to be A-linear, we require for all
a ∈ A

evM (a(f ⊗m)) =
∑

evM (a′f ⊗ a′′m) =
∑

f(S(a′)a′′m) = f
((∑

S(a′)a′′
)
m
)

= aevM (f ⊗m) = ε(a)f(m) = f(η ◦ ε(a)m)

This suggests we need
∑
S(a′)a′′ = η◦ε(a), or that the following diagram commutes:

A A⊗A

A A⊗A

η◦ε

∆

S⊗id

µ
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As for the coevaluation δM : k → M ⊗M∗ to be A-linear (of course assuming M
finite dimensional as vector space), the computation is more intricate, but we require
for all a ∈ A

δM (a(1)) = ε(a)
∑
i

mi ⊗m∗i =
∑
i

η ◦ ε(a)mi ⊗m∗i

= aδM (1) =
∑
i

∑
(a)

a′mi ⊗ a′′m∗i

=
∑
i

∑
(a)

a′mi ⊗
(∑

j

m∗i (S(a′′)mj)m
∗
j

)
=
∑
i

∑
(a)

∑
j

a′m∗i (S(a′′)mj)mi ⊗m∗j

=
∑
(a)

∑
j

a′
∑
i

(m∗i (S(a′′)mj)mi)⊗m∗j

=
∑
(a)

∑
j

a′S(a′′)mj ⊗m∗j

and so we need
∑
a′S(a′′) = η ◦ ε(a), or that the following diagram commutes:

A A⊗A

A A⊗A

η◦ε

∆

id⊗S

µ

Definition 4.6. A Hopf algebra (A,µ, η,∆, ε, S) over k is a bialgebra over k equipped
with a linear endomorphism S on A which is also an anti-homomorphism, so that the
following diagrams commute:

A A⊗A

A A⊗A

η◦ε

∆

S⊗id

µ

A A⊗A

A A⊗A

η◦ε

∆

id⊗S

µ

S is called the antipode of the Hopf algebra A.

Lemma 4.7. Given a Hopf algebra A and a (finite-dimensional) A-module M , the
evaluation and coevaluation maps evM : M∗ ⊗M → k and δM : k →M ⊗M∗ are each
A-linear.

Proof. As above. �
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4.2. The classical case of U(sl2(C)).

Fix the ground field k = C, its key properties being that it has characteristic zero
and is algebraically closed. We focus first on the sl2 case as it is a ‘building block’
for subsequent general (semisimple) Lie algebras and in fact certain key results in the
general case will come to rely on the corresponding result for sl2.

4.2.1. Recall the Lie algebra sl2(C) has basis e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
and its universal enveloping algebra U(sl2(C)) is the algebra over C generated by
E,F,H modulo relations

EF − FE = H

EH −HE = −2E ⇐⇒ EH = (H − 2)E

FH −HF = 2F ⇐⇒ FH = (H + 2)F

Remark 4.8. There is a standard Hopf algebra structure on U(sl2(C)) (or more gener-
ally, U(g) for any Lie algebra g), given by ∆(x) = 1⊗x+x⊗1, ε(x) = 0 and S(x) = −x
for all x ∈ g. The issue is, cf. Remark 4.4, that ∆ is cocommutative.

We would like to consider (finite-dimensional) representations of sl2(C), or equiva-
lently modules M over the algebra U(sl2(C)) which are finite-dimensional as C-vector
spaces. Equivalently, we specify how E,F,H act on M as linear endomorphisms, sat-
isfying the above relations.

We recall first some standard results from the representation theory of U(sl2(C)), to
set the fuller picture.

Definition 4.9. (Weights, weight spaces) A (non-zero) eigenvector v ∈ M of H with
eigenvalue λ is said to be of weight λ, and the eigenspace of H corresponding to eigen-
value λ is called a weight space of M (of weight λ) and denoted Mλ.

Lemma 4.10. For all λ, we have EMλ ⊂Mλ+2 and FMλ ⊂Mλ−2.

Proof. Straightforward from the latter two of the three defining relations satisfied by
E,F,H. �

Lemma 4.10 motivates the following definition and lemma:

Definition 4.11. (Highest weight) If v ∈ M is of weight λ and Ev = 0, then we say
in addition that v is of highest weight λ.

Lemma 4.12. There is a highest weight vector in every finite-dimensional module M .

Proof. The finite-dimensionality of M guarantees that it has only finitely many weights,
whence the result follows from Lemma 4.10. �

If M is finite-dimensional irreducible, therefore, it must be generated (as U(sl2(C))-
module) by a highest weight vector v ∈M .
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Lemma 4.13. Let v ∈ M be of highest weight λ. For i ≥ 0, denote vi = 1
i!F

iv
(in particular v0 = v). Then we have Hvi = (λ − 2i)vi, Evi = (λ − i + 1)vi−1 and
Fvi = (i+ 1)vi+1.

Proof. Straightforward computations from the defining relations of E,F,H. �

Lemma 4.14. Let v ∈ M be of highest weight λ, suppose v generates M and M is
finite-dimensional. Then λ = dim(M)− 1 (in particular, λ is a non-negative integer),
and M has weight spaces Mλ,Mλ−2, · · · ,M−λ each of dimension 1.

Proof. Keeping notations of Lemma 4.13, since the vi have distinct weights, there must
exist some j with vj 6= 0 and vj+1 = 0. Then 0 = Evj+1 = (λ − j)vj gives λ = j.
Now v0, · · · , vj are linearly independent (since they have distinct weights) and it is
clear from Lemma 4.13 that they span M , so they form a basis for M , from which
everything follows. �

Lemma 4.15. Keeping assumptions and notations of Lemma 4.14, we have also that
M is irreducible.

Proof. Suppose M ′ is a proper submodule of M . Then it has a highest weight vector
v′ which must also be a highest weight vector for M , and must therefore be a scalar
multiple of v, but then this forces M ′ = M . �

The point here is that the finite-dimensional irreducible modules over U(sl2(C)) are
completely parameterised by the non-negative integer λ.

4.3. The quantum case of Uq(sl2(C)).

Again, fix the ground field C and an indeterminate q ∈ C. Here we will also assume
q is not a root of unity, for reasons which will soon become clear. We often also view
the situation as being over the ground field C(q).

The algebra Uq(sl2(C)) is now defined as the algebra generated by E,F,K,K−1,
modulo relations

KK−1 = K−1K = 1

EF − FE =
K −K−1

q − q−1

EK = q−2KE

FK = q2KF

Throughout this subsection we will denote U = Uq(sl2(C)).

Lemma 4.16. U may be (Z-)graded by assigning deg(E) = 1, deg(F ) = −1 and
deg(K) = deg(K−1) = 0. If u ∈ U is homogeneous of degree i, then KuK−1 = q2iu.

Proof. For the first statement, one simply has to verify that the defining relations are
all degree-homogeneous. The second statement follows directly from the first, third
and fourth relations. �
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Lemma 4.17. There is a non-cocommutative Hopf algebra structure on U defined by

∆(E) = E ⊗ 1 +K ⊗ E, ∆(F ) = F ⊗K−1 + 1⊗ F, ∆(K) = K ⊗K
ε(E) = ε(F ) = 0, ε(K) = 1

S(E) = −K−1E, S(F ) = −FK, S(K) = K−1.

Proof. To check well-definedness, one simply has to verify that the images of each of the
generators (E,F,K,K−1) satisfy the same four defining relations (bearing in mind that
S is an anti-homomorphism). Checking coassociativity of ∆ and that S is an antipode
essentially need also be done only on the generators. These are all straightforward
computations. �

Lemma 4.18. We have S2(u) = K−1uK for all u ∈ U .

Proof. Again, we need only check this on the generators. �

As in the classical case, we would again like to consider (finite-dimensional) represen-
tations of U , or equivalently modules M over the algebra U which are finite-dimensional
as vector spaces. Equivalently, we specify how E,F,K act on M as linear endomor-
phisms, satisfying the above relations. The key point is that everything proceeds more
or less as in the classical case.

Definition 4.19. (Weights, weight spaces) A (non-zero) eigenvector v ∈ M of K
with eigenvalue λ is said to be of weight λ, and the eigenspace of K corresponding to
eigenvalue λ is called a weight space of M (of weight λ) and denoted Mλ.

Lemma 4.20. For all λ, we have EMλ ⊂Mq2λ and FMλ ⊂Mq−2λ.

Proof. Straightforward from the latter two of the four defining relations satisfied by
E,F,K. �

Lemma 4.20 motivates the following definition and lemma:

Definition 4.21. (Highest weight) If v ∈ M is of weight λ and Ev = 0, then we say
in addition that v is of highest weight λ.

Lemma 4.22. There is a highest weight vector in every finite-dimensional U -module
M .

Proof. The finite-dimensionality of M guarantees that it has only finitely many weights,
whence the result follows from Lemma 4.20. (Recall q is not a root of unity!) �

Again, if M is finite-dimensional irreducible, it must be generated (as U(sl2(C))-
module) by a highest weight vector v ∈M .

In fact, the key idea of Lemma 4.20, together with the invertibility of K, allows us
to deduce something more.

Lemma 4.23. E,F act nilpotently on every finite-dimensional U -module M .
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Proof. We handle E; the result for F follows similarly. There is nothing stopping us
from ‘reversing’ the roles of E and K in the idea of Lemma 4.20; given an eigenvector v
of E with eigenvalue µ, say, we have thatKv is an eigenvector of E with eigenvalue q−2µ.
Observe that the invertibility of K guarantees that Kv 6= 0 (whenever v 6= 0). So if
µ 6= 0, together with q not a root of unity, we obtain infinitely many distinct eigenvalues
for E, contradicting finite-dimensionality. It follows that the only eigenvalue of E is 0,
i.e. E acts nilpotently as desired. �

Comparison with the classical case motivates the introduction of the so-called quan-
tum integers, which correspond in a sense to the usual integers of the classical case.
Their notation is standard in the literature; we state them here again for completeness:

Definition 4.24. For each a ∈ Z, denote

[a] :=
qa − q−a

q − q−1

and for n ∈ Z with n ≥ 0 denote

[n]! := [n][n− 1] · · · [2][1].

For all a ≥ n ≥ 0 we have the so-called Gaussian binomial coefficients defined by[
a

n

]
:=

[a]!

[n]![a− n]!

and for a < 0 [
a

n

]
:=

[a][a− 1] · · · [a− n+ 1]

[n]!

We denote also for all a ∈ Z

[K; a] :=
Kqa −K−1q−a

q − q−1

and in general

[λ; a] :=
λqa − λ−1q−a

q − q−1

The similarity to the classical case is apparent in the following sequence of results,
which we had earlier obtained for the classical case.

Lemma 4.25. Let v ∈ M be of highest weight λ. For i ≥ 0, denote vi = 1
[i]!F

iv

(in particular v0 = v). Then we have Kvi = (λq−2i)vi, Evi = [λ;−(p − 1)]vi−1 and
Fvi = [i+ 1]vi+1.

Proof. Straightforward computations from the defining relations, very similarly to
Lemma 4.13. �

Lemma 4.26. Let v ∈ M be of highest weight λ, suppose v generates M and M is
finite-dimensional. Then λ = ±qdim(M)−1 (in particular, λ is up to a sign a non-
negative integer power of q), and M has weight spaces Mλ,Mλq−2 , · · · ,Mλ−1 each of
dimension 1.
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Proof. Exactly as in Lemma 4.14. �

Lemma 4.27. Keeping assumptions and notations of Lemma 4.26, we have also that
M is irreducible.

Proof. Exactly as in Lemma 4.15. �

The point here is that the finite-dimensional irreducible modules over U are com-
pletely parameterised by the non-negative integers and a choice of sign.

The nilpotency of E,F (Lemma 4.23) in fact allows us to conclude via a direct
computational proof that the linear operator K satisfies a polynomial which splits into
distinct linear factors, i.e. the minimal polynomial of K splits into distinct linear
factors, i.e. that M is the direct sum of its weight spaces.

We first require a standard lemma on the commutation relation between powers of
E and F , which appears in e.g. [Lu].

Lemma 4.28. For all a, b ∈ Z, a, b ≥ 0 we have

EaF b =

min(a,b)∑
j=0

[
a

j

][
b

j

]
[j]!F b−j

( j∏
i=1

[K; j − a− b+ i]
)
Ea−j

Proof. The proof is by induction on a, b and direct computation; since it is rather
lengthy, we omit it here. �

Proposition 4.29. Every finite-dimensional U -module M is the direct sum of its
weight spaces, and its weights are all of the form ±qa for a ∈ Z.

Proof. By Lemma 4.23, F acts nilpotently on M , say F b is the zero operator on M for
some b ∈ Z, b ≥ 0. Now using Lemma 4.28, we have

EF b =
1∑
j=0

[
1

j

][
b

j

]
[j]!F b−j

( j∏
i=1

[K; j − 1− b+ i]
)
E1−j

=

[
1

0

][
b

0

]
[0]!F bE +

[
1

1

][
b

1

]
[1]!F b−1

(
[K; 1− b]

)
and this implies that F b−1

(
[K; 1− b]

)
is zero on M . Again using Lemma 4.28, we have

E2F b =
2∑
j=0

[
2

j

][
b

j

]
[j]!F b−j

( j∏
i=1

[K; j − 2− b+ i]
)
E2−j

=

[
2

0

][
b

0

]
[0]!F bE2 +

[
2

1

][
b

1

]
[1]!F b−1

(
[K;−b]

)
E

+

[
2

2

][
b

2

]
[2]!F b−2

(
[K; 1− b][K; 2− b]

)
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Now multiplying both sides on the right by [K; 3 − b], and using the easily verified
fact that E[K; 3− b] = [K; 1− b]E (this holds in general with 3− b replaced with any
integer), we see that

F b−2
(
[K; 1− b][K; 2− b][K; 3− b]

)
is zero on M .

It is clear that we can proceed inductively in this manner; in general, we obtain for
all 0 ≤ i ≤ b that

F b−i
(
[K; 1− b][K; 2− b][K; 3− b] · · · [K; (2i− 1)− b]

)
is zero on M .

In particular, at the end we obtain (for i = b) that

[K; 1− b][K; 2− b][K; 3− b] · · · [K; b− 1]

is zero on M ; some straightforward manipulations then give the desired, which is that
K satisfies a polynomial which splits into distinct linear factors of the form (x± qa) for
a ∈ Z. �

Remark 4.30. In the classical case, a theorem of Weyl allows us to conclude (from
the semisimplicity of sl2(C)) that in fact every finite-dimensional U(sl2(C))-module
is semisimple; i.e. it is a direct sum of irreducible modules. Minor modifications of
the proof of this theorem allow us to show this also in the quantum case; that is,
every finite-dimensional U = Uq(sl2(C))-module is a direct sum of irreducible modules.
Since the proof of this requires a lengthy discussion (e.g. requires the use of the Casimir
element), and we do not need the full strength of this result subsequently, we do not
discuss this result here.

In comparison with the classical case, the obvious difference is the presence of signs
in the weights. Intuitively, we do not lose any information by specifying that all weights
have positive sign, since all that matters is a choice of sign. Formally, there is an equiv-
alence between the category of U -modules with all weights positive, and the category
of U -modules with all weights negative (although we do not show this here). Therefore,
we usually consider only those U -modules with all weights positive, and henceforth we
will do just this. These are also known as type 1 modules.

Definition 4.31. We denote by U the category of finite-dimensional U -modules (of
type 1), with morphisms as U -module homomorphisms.

Lemma 4.32. (U is a tensor, or monoidal category) U is a tensor category with the
obvious tensor operation of taking tensor products of modules.

Proof. From ∆(K) = K ⊗ K, the tensor product of two weight spaces of positive
weight is a (subspace of a) weight space of the product of the two weights, which is
again positive. The associativity comes from the associativity of the tensor product of
modules (which in turn comes from coassociativity of the Hopf algebra U). The unit
object is the trivial one-dimensional module C with weight q0 = 1; equivalently, we can
see this as being the action induced by the counit ε of U on the ground field C. �
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4.4. Non-cocommutativity of U .

Recall in Remark 4.4 that one of the central ideas behind the introduction of U =
Uq(sl2(C)) is its non-cocommutativity as a Hopf algebra. In doing so we lose the natural
“flip” isomorphism between V ⊗W and W ⊗ V . However, we should still expect to
have natural isomorphisms between V ⊗W and W ⊗ V for any U -modules V,W . In
this subsection we do just that, following the approach of Jantzen in [Ja]:

Definition 4.33. We use τ to denote any ‘flip” morphism. More precisely, we denote
by τ : U ⊗U → U ⊗U the ‘flip’ homomorphism sending u′⊗ u′′ to u′′⊗ u′, and for any
two U -modules V,W we also denote by τ : V ⊗W →W ⊗ V the ‘flip’ homomorphism
sending v ⊗ w to w ⊗ v. It will always be clear from the context which of the two we
mean.

Definition 4.34. For each integer n ≥ 0 denote

an = (−1)nq−n(n−1)/2 (q − q−1)n

[n]!

and
Θn = anF

n ⊗ En.

Given any finite-dimensional U -modules V,W recall that E,F each act nilpotently
on each of V,W (Lemma 4.23). We therefore have a well-defined (linear) map Θ :
V ⊗W → V ⊗W defined by

Θ =
∑
n≥0

Θn.

When there are multiple U -modules involved we denote this map by ΘV,W .

Lemma 4.35. Θ is bijective.

Proof. F ⊗ E acts nilpotently on V ⊗W , so that Θ is in fact unipotent (Θ0 = 1 ⊗ 1)
and therefore bijective. �

Definition 4.36. Given any finite-dimensional U -modules V,W recall that V,W are
each the direct sum of their weight spaces, and recall that we assume that all weights
are of the form +qa (a ∈ Z). Define a function f ′ by f ′(qa, qb) = (q1/2)−ab for all
a, b ∈ Z (for ease of understanding, we may denote this scalar function also by f when
there is no risk of confusion), and define a (linear) map f : V ⊗ W → V ⊗ W by
f(v ⊗ w) = f ′(λ, µ)v ⊗ w whenever v ∈ Vλ and w ∈Wµ. It is clear that f is bijective.

Lemma 4.37. Given any finite-dimensional U -modules V,W , we have for all u ∈ U
that

∆(u) ◦Θ ◦ f = Θ ◦ f ◦ (τ ◦∆)(u)

as maps from V ⊗W to itself.

Proof. It suffices to verify this for u the generators E,F,K and that the maps agree on
each weight space of V ⊗W , and the rest is purely computational. �
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Proposition 4.38. Given any finite-dimensional U -modules V,W , the map R : V ⊗
W →W ⊗ V defined by

R = Θ ◦ f ◦ τ
is a U -module isomorphism. When there are multiple U -modules involved we denote
this map by RV,W .

Proof. Θ, f, τ are each bijective, so R is bijective also. Now for all u ∈ U and x ∈ V ⊗W
we have

R(u · x) = Θ ◦ f ◦ τ ◦∆(u)(x)

= Θ ◦ f ◦ (τ ◦∆)(u)(τ(x))

= ∆(u) ◦Θ ◦ f(τ(x)) (by Lemma 4.37)

= ∆(u) ◦R(x)

= u ·R(x)

as desired. �

Proposition 4.39. (Naturality of R) The isomorphism R is a natural isomorphism
in the following sense: given any finite-dimensional U -modules V,W, V ′,W ′, and any
U -module homomorphisms g : V → V ′, h : W →W ′, the following diagram commutes:

V ⊗W W ⊗ V

V ′ ⊗W ′ W ′ ⊗ V ′
g⊗h

RV,W

h⊗g
RV ′,W ′

In other words, it is a natural isomorphism between the functors ⊗ and ⊗τ on the
category of finite-dimensional U -modules.

Proof. This is to be expected since Θ, f, τ are each defined ‘independently’ of any U -
module. To be more precise: g ⊗ h is (U ⊗ U)-linear, so commutes with Θ ∈ U ⊗ U ;
g⊗h preserves weight spaces, so commutes with f which acts as a scalar on each weight
space; g ⊗ h clearly commutes with the flip τ . �

For any two (finite-dimensional) U -modules V,W ∈ U , therefore, we now have a
natural isomorphism RV,W : V ⊗W → W ⊗ V . While we could discuss further here
the important properties it is constructed to possess, we will defer this discussion and
return to it in Section 5.5, where greater context can be given to its properties.

4.5. A word on general semisimple g.

Everything we have done in this section can be generalised to arbitrary (complex)
semisimple Lie algebras g, with the additional difficulty being only technical rather
than conceptual. This is a consequence of Serre’s theorem for complex semisimple Lie
algebras: given such a Lie algebra g, consider a root system Φ with base Π. Then
there is a presentation of g (also U(g)) by 3|Π| generators xα, yα, hα for α ∈ Π, modulo
certain relations. For each α ∈ Π, xα, yα, hα generate a ‘copy’ of U(sl2) in U(g),



48 BRYAN WANG PENG JUN

and this forms the basis for many of the results concerning U(g). The quantum case
is then obtained similarly; Uq(g) is generated by generators Eα, Fα,Kα,K

−1
α for all

α ∈ Π, modulo certain relations derived from those of U(g), and for each α ∈ Π,
Eα, Fα,Kα,K

−1
α generate a ‘copy’ of Uq(sl2) in Uq(g).
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5. Reshitikhin-Turaev invariants

We return now to the setting of knots and tangles. As mentioned, our aim is to
produce knot invariants in a more motivated manner, by starting with the three Rei-
demeister moves and formulating them as algebraic relations that are to be satisfied.
To this end, we would like to view tangle diagrams as algebraic objects.

5.1. The category of tangles T .

5.1.1. How can a tangle be viewed as an algebraic object? The ‘content’, or ‘infor-
mation’ expressed in a tangle consists of its (fixed) endpoints, as well as the way in
which its components are tangled between the endpoints. We may therefore view the
tangle as encoding a relation (modulo isotopy) between its endpoints. In other words,
we may think of the endpoints of each tangle as being objects in some category, and of
the tangle itself as some morphism in this category.

Since each morphism involves a source and a target, the natural choice is to view
tangles as boxed tangles (Definition 2.4). In this section, therefore, all tangles will be
taken to be boxed tangles.

Definition 5.1. (Category of tangles T ) The category of tangles T is defined to be
the category with:

• objects as all (finite) sequences of � and � symbols, corresponding to the end-
points on either the top or bottom boundary of a boxed oriented tangle diagram
(modulo isotopy, i.e. free movement of endpoints).
• morphisms between two objects as tangle diagrams (modulo isotopy, or equiva-

lence) with bottom endpoints corresponding to the source object and top end-
points corresponding to the target object.
• composition of morphisms is defined in the obvious way by vertical stacking of

tangle diagrams;
• the identity morphism for each object (set of endpoints) is the ‘trivial’ tangle

diagram with no crossings.

Figure 28. Example of objects, morphisms and composition in T .
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Composition in T is defined by vertical composition. One may then naturally ask if
we can similarly interpret horizontal composition in T . In fact this makes T naturally
a tensor (also called monoidal) category:

Lemma 5.2. T is a tensor (or monoidal) category with the tensor operation ⊗ :
T ×T → T given by the obvious horizontal stacking for both objects and morphisms.

Proof. The associativity of ⊗ is obvious; the unit object is the empty object with no
endpoints. �

5.1.2. The category T is now defined but is still unmanageable. We would like to
again work with local parts of tangle diagrams which we know must take a certain
form. The advantage of formulating T as a category is it allows us to break tangle
diagrams down into small, elementary pieces via composition and the tensor operation.

Proposition 5.3. Every tangle diagram, or morphism in T , may be expressed via
finite compositions and tensor products of the so-called elementary tangle diagrams
(morphisms), which are listed and denoted as follows (here we show only one of the
four possible choices of orientation for the crossings c−,−):

Figure 29. Elementary tangles.

Proof. The idea is intuitively straightforward and runs as follows: given any tangle
diagram, first modify the tangle diagram by suitable isotopy (equivalence of diagrams)
so that no two crossings in the diagram have the same y-coordinate. Then the tangle
diagram is a composition of some number of smaller tangle diagrams each with at most
one crossing. It is easy to see then that each of these tangle diagrams with at most one
crossing must be a tensor product of elementary tangle diagrams. �

Of course, T is certainly not freely generated by the elementary tangles. One can see
this already from the choice of notation for the over- and under-crossings in Figure 29,
to represent that they are inverses of each other (under composition in T ). This
corresponds to the second Reidemeister move (R2).
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It is clear that the minimal set of relations satisfied by the elementary tangles to
generate T should come precisely from isotopy/equivalence of diagrams and the Rei-
demeister moves. Moreover, since the crossings for each choice of orientation each
give rise to one generator, we need also to ensure that the crossings for the various
orientations are compatible in some sense. A result of Turaev makes this precise:

Proposition 5.4. T is generated by the elementary tangles modulo the following rela-
tions (and minor modifications of the relations corresponding to change in orientation):

Figure 30. Relations satisfied by elementary tangles (up to a choice of orientation).

Proof. (R1), (R2), (R3) correspond to the usual Reidemeister moves, written to make
the elementary tangles explicit. (T1) accounts for equivalence of diagrams (which does
not involve crossings), while (T2) accounts for the compatibility of different orientations
of crossings. Repeated application of (T2) will ensure compatibility for all four choices
of orientation. �

5.2. Functor between categories.

Thus far we have two tensor categories: T , the category of tangles, and U , the
category of (finite-dimensional) U -modules (of type 1). Since a tangle invariant is,
roughly speaking, a ‘function’ on tangle diagrams (modulo equivalence), the natural
thing to do is to consider a functor F on the category T .

Since each object in T is a sequence of endpoints, it is also a tensor product of
objects with one endpoint each. Therefore, for the objects, it is enough to specify a
U -module, say V , for which F (�) = V (we will come back to � later). Where there are
no endpoints, i.e. in the case of the empty object, the natural choice is the trivial or
unit module of U , which we will denote by k (for the ground field), i.e. F (∅) = k.

For the morphisms, it is then enough to specify a U -linear homomorphism in U
for each of the elementary tangles (Figure 29), and check that the relations between
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elementary tangles (Figure 30) are satisfied, so that this gives a well-defined functor F .
The functor F is then an invariant of tangles with ‘values’ in U .

5.3. Duality.

5.3.1. � and � are in a sense dual to each other: they differ by only their orientation
(this is especially so if we consider endpoints of the same component; the full picture
will become clear soon). In U , we also have a natural notion of duality given by the
dual module (which in turn comes from the antipode of U), cf. Lemma 4.7.

Therefore, having chosen F (�) = V , the natural choice is to choose F (�) = V ∗. Now
Lemma 4.7 in fact gives us the morphisms that should correspond to the elementary
tangles

←−∩ and
←−∪ ! That is, we specify F (

←−∩ ) = evV : V ∗ ⊗ V → k and F (
←−∪ ) = δV :

k → V ⊗ V ∗.
What is the precise way in which they are dual? The relation that must be satisfied

by
←−∩ and

←−∪ is given by (the second half of) (T1). We require

(idV ⊗ evV ) ◦ (δV ⊗ idV ) = idV

and for (the first half of) (T1) with the downward orientation, we require

(evV ⊗ idV ∗) ◦ (idV ∗ ⊗ δV ) = idV ∗

Lemma 5.5. For all (finite-dimensional) U -modules V , we have

(idV ⊗ evV ) ◦ (δV ⊗ idV ) = idV

and
(evV ⊗ idV ∗) ◦ (idV ∗ ⊗ δV ) = idV ∗ .

Proof. Straightforward verification. �

In fact this is precisely the notion of right duality in a (tensor) category; for each
object V there should exist morphisms evV , δV satisfying the properties of Lemma 5.5.

5.3.2. We then now need also the notion of left duality, specifying morphisms for the
elementary tangles F (

−→∩ ) = ev′V : V ⊗ V ∗ → k and F (
−→∪ ) = δ′V : k → V ∗ ⊗ V .

In the classical case of (finite-dimensional) vector spaces, this may be resolved by
appealing to the canonical isomorphism V → (V ∗)∗, which composes, say, to give
the map V ⊗V ∗ → (V ∗)∗⊗V ∗ → k. However, in the case of U , a computation reveals
that the canonical map V → (V ∗)∗ is not U -linear, as we will see in the following
lemma:

Lemma 5.6. For all (finite-dimensional) U -modules V , the canonical map

e : V → (V ∗)∗

v 7→ (f 7→ f(v))

is not U -linear; rather, it satisfies for all u ∈ U
u · e(v) = e(S2(u)v).
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Proof. We have

u · e(v) = u · (f 7→ f(v))

= (f 7→ (S(u) · f)(v))

= (f 7→ f(S(S(u))v))

= e(S2(u)v)

�

Recall, however, from Lemma 4.18, that while S2 is not the identity, it is an inner
automorphism given by conjugation by K. So

u · e(v) = e(K−1uKv)

=⇒ u · e(K−1v) = e(K−1uv)

Hence the composition eK−1, which maps f 7→ f(K−1v), is indeed U -linear. We
therefore still have a U -linear composition V ⊗ V ∗ → (V ∗)∗ ⊗ V ∗ → k, given as in the
following lemma:

Lemma 5.7. For all (finite-dimensional) U -modules V , the map

ev′V : V ⊗ V ∗ → k

v ⊗ f 7→ f(K−1v)

is a U -module homomorphism.

Proof. As above. �

Similarly, since the composition eK−1 is bijective with inverse Ke−1 which is also
U -linear, we have a U -linear composition k → V ∗ ⊗ (V ∗)∗ → V ∗ ⊗ V :

Lemma 5.8. For all (finite-dimensional) U -modules V , the map

δ′V : k → V ∗ ⊗ V

1 7→
∑
i

v∗i ⊗Kvi

is a U -module homomorphism.

Proof. As above. �

We can now verify

Lemma 5.9. For all (finite-dimensional) U -modules V , we have

(ev′V ⊗ idV ) ◦ (idV ⊗ δ′V ) = idV

and
(idV ∗ ⊗ ev′V ) ◦ (δ′V ⊗ idV ∗) = idV ∗ .
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Proof. We verify the first equality; the second is similar. We have for all v ∈ V

(ev′V ⊗ idV ) ◦ (idV ⊗ δ′V )(v) = (ev′V ⊗ idV )(
∑
i

v ⊗ v∗i ⊗Kvi)

=
∑
i

v∗i (K
−1v)Kvi

= K
∑
i

v∗i (K
−1v)vi

= K(K−1v)

= v

as desired. �

5.4. Coloured tangles.

The choice F (�) = V ‘forces’, by duality, a choice F (�) = V ∗. However, nothing has
been said about the choice of V itself. In fact, all that is required is for the endpoints
of each component of a tangle to carry the same U -module ∈ U , with duality then in-
dicating orientation. We may well choose separate U -modules for separate components
of a tangle.

This is precisely the idea of coloured tangles as considered by Reshitikhin and Turaev;
the ‘colouring’ refers to a choice of (finite-dimensional) U -module for each component
of a tangle (which remains the same under isotopy). Our functor F then defines an
invariant of coloured oriented tangles (again, the orientation comes from duality).

Henceforth we will implicitly work in this more general setting; if all components
are ‘coloured’ with the same U -module V we recover the usual case of plain oriented
tangles. (It is worth noting, while obvious, that since the cap and cup morphisms
involve only one component, the preceding discussion carries through to this greater
generality.)

5.5. Braiding.

5.5.1. Now we have successfully assigned morphisms to the ‘cap’ and ‘cup’ elementary
tangles

←−∩ ,←−∪ ,−→∩ ,−→∪ . The natural next step is to consider the ‘crossing’ elementary
tangles c−,−.

The crossing morphism essentially captures a relation between V ⊗W and W ⊗ V
for objects (endpoints) V,W . The extremely natural choice, therefore, considering
also what we have done in Section 4.4, is F (c�,�) = RV,W , and similarly for the other
orientations (associated to V ∗ and/or W ∗)! That is, to a crossing between objects
(endpoints) which are associated with U -modules V,W , we associate the morphism
RV,W which expresses the natural map between V ⊗W and W ⊗ V .

Remark 5.10. It is clear now why the usual flip morphism is not desirable, and hence
why the need for non-cocommutative Hopf algebra structures (cf. Remark 4.4); we
require R2 6= id in order to distinguish between the (clearly non-equivalent) tangles:



KNOT INVARIANTS AND THE REPRESENTATION THEORY OF QUANTUM GROUPS 55

Figure 31. Non-equivalent tangles; we require R2 6= id to distinguish them.

5.5.2. There are now two key things that need to be handled regarding the crossings.
First, while (R2) is straightforward and has already been handled (over- and under-
crossings are inverses of each other), (R3) is the key relation that need to be satisfied
by crossings; it is a relation between crossings of three components (objects). Secondly,
(T2) expresses compatibility between duality (caps and cups) and crossings, and needs
to be checked.

5.5.3. We consider first (R3), since it involves only crossings, as given in Figure 30.
Suppose both the LHS and RHS of (R3) has bottom endpoints corresponding to
U, V,W ∈ U in that order (from left to right); that is, they are both morphisms
U ⊗ V ⊗W →W ⊗ V ⊗ U . Then (R3) can be written as

(RV,W ⊗ idU )◦(idV ⊗RU,W )◦(RU,V ⊗ idW ) = (idW ⊗RU,V )◦(RU,W ⊗ idV )◦(idU⊗RV,W )

Remark 5.11. In the case U = V = W (all components are coloured with the same
U -module V ), this relation is also known as the quantum Yang-Baxter equation with
solution RV,V , and is again one of the main reasons motivating the introduction of
quantum groups.

Before tackling (R3), we recall first that the crossing R is meant to capture a crossing
between any two objects V,W . In particular, one should expect that it also captures
a crossing between objects which are themselves tensor products. This will allow us to
work with expressions of the form (R3) much more naturally and easily. For example,
the bottom two-thirds of the RHS of (R3) is essentially an (over-)crossing between
U ⊗ V and W . Therefore, we should expect also a relation of the form

RU⊗V,W = (RU,W ⊗ idV ) ◦ (idU ⊗RV,W )

We state this as:
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Proposition 5.12. (“Hexagon” identities) For any finite-dimensional U-modules U, V,W ,
the following diagram commutes:

U ⊗ (W ⊗ V ) (U ⊗W )⊗ V

U ⊗ (V ⊗W ) (W ⊗ U)⊗ V

(U ⊗ V )⊗W W ⊗ (U ⊗ V )

can

RU,WRV,W

can

RU⊗V,W

can

where can denotes the usual canonical isomorphism expressing associativity of the ten-
sor product.

Proof. Naturally the most important thing to ask is: how does R = Θ ◦ f ◦ τ act on
the tensor product (U ⊗ V )⊗W?

First of all, τ acts by sending u⊗v⊗w 7→ w⊗u⊗v, which is essentially a permutation
which is a composition of transpositions (τ ⊗ id) ◦ (id⊗ τ).

Next, since K acts as ∆(K) = K ⊗K on U ⊗ V , it follows that the weight spaces
satisfy Uλ ⊗ Vµ ⊂ (U ⊗ V )λµ, so that f acts on the tensor product of weight spaces
Wρ ⊗ Uλ ⊗ Vµ as scalar multiplication by f(ρ, λµ). Let us denote this map by f ′.

Finally, Θ ∈ U⊗U acts on W ⊗ (U ⊗ V ) by (id⊗∆) ◦Θ ∈ U⊗ (U⊗U).

Let us take a closer look at the most crucial component, (id⊗∆) ◦Θ. In particular,
this involves the term ∆(En) for each n ≥ 0. Since ∆(E) = E ⊗ 1 + K ⊗ E and ∆
is a homomorphism of algebras, we have the following binomial-style identity (easily
verified via induction on n):

∆(En) =

n∑
i=0

qi(n−i)
[
n

i

]
En−iKi ⊗ Ei

so for all n ≥ 0 we have (keeping notations of Definition 4.34)

(id⊗∆) ◦Θn =

n∑
i=0

anq
i(n−i)

[
n

i

]
Fn ⊗ En−iKi ⊗ Ei

=
n∑
i=0

aian−i(F
n−i ⊗ En−i ⊗ 1)(F i ⊗Ki ⊗ Ei)

=
n∑
i=0

(Θn−i ⊗ 1)Θ′i (Θ′i := ai(F
i ⊗Ki ⊗ Ei))

so that, summing over n, we have

(id⊗∆) ◦Θ = (Θ⊗ 1) ◦Θ′ (Θ′ :=
∑
i≥0

Θ′i)
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In summary, we may write RU⊗V,W as a composition

RU⊗V,W = (Θ⊗ 1) ◦Θ′ ◦ f ′ ◦ (τ ⊗ id) ◦ (id⊗ τ)

Now we turn to the composition

(RU,W ⊗ idV ) ◦ (idU ⊗RV,W ) = (Θ⊗ 1) ◦ (f ⊗ id) ◦ (τ ⊗ id) ◦ (1⊗Θ) ◦ (id⊗ f) ◦ (id⊗ τ)

Comparing the two, the plan is clear: we ‘push’ (τ ⊗ id) to the right and (1⊗Θ) to
the left.

To commute (τ ⊗ id) and (1 ⊗ Θ), we simply define Θn = anF
n ⊗ 1 ⊗ En and

Θ =
∑

n≥0 Θn; then certainly (τ ⊗ id) ◦ (1⊗Θ) = Θ ◦ (τ ⊗ id).

To commute (τ ⊗ id) and (id⊗ f), we similarly define f to get (τ ⊗ id) ◦ (id⊗ f) =
f ◦ (τ ⊗ id).

Now what is left is to commute (f ⊗ id) and Θ. It suffices to consider the weight
spaces; for all wρ ⊗ uλ ⊗ vµ ∈Wρ ⊗ Uλ ⊗ Vµ, we have

(f ⊗ id) ◦Θ(wρ ⊗ uλ ⊗ vµ) = (f ⊗ id)
∑
n≥0

anF
nwρ ⊗ uλ ⊗ Envµ

=
∑
n≥0

f(ρq−2n, λ)anF
nwρ ⊗ uλ ⊗ Envµ (cf. Lemma 4.20)

Now recall f(qa, qb) = (q1/2)−ab for all a, b ∈ Z. Therefore writing ρ = qa, λ = qb for

some a, b ∈ Z, we have f(ρq−2n, λ) = (q1/2)−(a−2n)b = (q1/2)−ab(qb)n = f(ρ, λ)λn .
Hence

(f ⊗ id) ◦Θ(wρ ⊗ uλ ⊗ vµ) =
∑
n≥0

f(ρ, λ)λnanF
nwρ ⊗ uλ ⊗ Envµ

=
∑
n≥0

f(ρ, λ)anF
nwρ ⊗Knuλ ⊗ Envµ

= Θ′ ◦ (f ⊗ id)(wρ ⊗ uλ ⊗ vµ)

that is, (f ⊗ id) ◦Θ = Θ′ ◦ (f ⊗ id).

It therefore finally remains now to show that (f ⊗ id) ◦ f = f ′. But again the LHS
acts on wρ⊗uλ⊗vµ ∈Wρ⊗Uλ⊗Vµ by multiplication by f(ρ, λ)f(ρ, µ), while the RHS
acts by f(ρ, λµ), and it is easily verified that these two quantities are equal.

�

Of course, we have considered RU⊗V,W , with the tensor product in the first object;
but the tensor product may equally be in the second object. Considering the bottom
two-thirds of the LHS of (R3) gives RU,V⊗W , and we also have a similar relation given
by:
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Proposition 5.13. (“Hexagon” identities) For any finite-dimensional U-modules U, V,W ,
the following diagram commutes:

(V ⊗ U)⊗W V ⊗ (U ⊗W )

(U ⊗ V )⊗W V ⊗ (W ⊗ U)

U ⊗ (V ⊗W ) (V ⊗W )⊗ U

can

RU,WRU,V

can

RU,V⊗W

can

where can denotes the usual canonical isomorphism expressing associativity of the ten-
sor product.

Proof. Extremely similar to Proposition 5.12; we will not repeat it here! �

Propositions 4.39, 5.12, 5.13 together form precisely the basis of the notion of a
braided (tensor) category. It is this precise notion that gives rise to useful applications
(e.g. the Yang-Baxter equation), such as to (R3):

Proposition 5.14. For any finite-dimensional U-modules U, V,W , we have the (R3)
relation

(RV,W ⊗ idU )◦(idV ⊗RU,W )◦(RU,V ⊗ idW ) = (idW ⊗RU,V )◦(RU,W ⊗ idV )◦(idU⊗RV,W )

Proof. The top two-thirds of the LHS of (R3) is itself a crossing between V ⊗ U and
W , while the bottom two-thirds of the RHS is a crossing between U ⊗ V and W . By
Proposition 5.12, it suffices to show

RV⊗U,W ◦ (RU,V ⊗ idW ) = (idW ⊗RU,V ) ◦RU⊗V,W .
But this is just the commutativity of the diagram

(U ⊗ V )⊗W W ⊗ (U ⊗ V )

(V ⊗ U)⊗W W ⊗ (V ⊗ U)

RU,V ⊗idW

RU⊗V,W

idW⊗RU,V

RV⊗U,W

which is Proposition 4.39! �

Remark 5.15. The name braiding comes from the corresponding theory for braids, which
are a special kind of tangle with no copies of S1 (so all components are copies of [0, 1])
and with all strands always oriented upward. Therefore no cup or cap morphisms are
required; the braids are generated by the crossings. The braids with n endpoints (n
each on top and bottom) form a group under the usual composition (vertical stacking),
with a presentation given by generators which are the crossings at each of the (n− 1)
possible positions and relations corresponding to (R2) and (R3).
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This relation has remarkable similarity to the presentation of the symmetric group
on n elements given by generators as transpositions; the only exception being that the
square of each crossing (generator) is not the identity in the braid group. Our algebraic
approach to tangles can be seen as a natural extension of the algebraic theory of braid
groups.

An alternate motivation for the algebraic approach is the following, which bears more
relation to the concept of categorification: just as a monoid is essentially a one-object
category (and vice versa), a tensor or monoidal category may be viewed essentially as a
one-object 2-category. Viewing our tensor category T as a one-object 2-category, then,
our approach is equivalent to the use of the standard string diagrams for visualising 2-
categories, with our objects in T being the 1-morphisms and our morphisms (tangles)
in T being the 2-morphisms.

5.5.4. We turn now to (T2), which expresses the compatibility between crossings and
cups/caps. Surprisingly, the compatibility between crossings and cups/caps is a conse-
quence of the generality of duality and braiding that we have developed!

Proposition 5.16. For any (finite-dimensional) U -modules V,W , we have the (T2)
relation (cf. Figure 30)

RV,W = (ev′V ⊗ idW⊗V ) ◦ (idV ⊗R−1
V ∗,W ⊗ idV ) ◦ (idV⊗W ⊗ δ′V )

Proof. First, from Lemma 5.9, we have

RV,W = RV,W ◦ (idV ⊗ idW )

= (idk ⊗RV,W ) ◦ (ev′V ⊗ idV⊗W ) ◦ (idV ⊗ δ′V ⊗ idW )

= (ev′V ⊗ idW⊗V ) ◦ (idV⊗V ∗ ⊗RV,W ) ◦ (idV ⊗ δ′V ⊗ idW )

Graphically, this may be visualised as in the first equality of Figure 32. The motivation
is to produce the cap morphism as appears in the RHS as (ev′V ⊗ idW⊗V ).

Now we would like to produce the crossing R−1
V ∗,W . We have

RV,W = (ev′V ⊗ idW⊗V ) ◦ (idV ⊗R−1
V ∗,W ◦ idV ) ◦ (idV ⊗RV ∗,W ◦ idV )

◦ (idV⊗V ∗ ⊗RV,W ) ◦ (idV ⊗ δ′V ⊗ idW )

Graphically, this is visualised in the second equality of Figure 32.
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Figure 32. Graphical visualisation of proof.

Therefore all that remains is to show

(RV ∗,W ◦ idV ) ◦ (idV ∗ ⊗RV,W ) ◦ (δ′V ⊗ idW ) = (idW ⊗ δ′V )

Visually, this is as in Figure 33.

Figure 33. Graphical visualisation of proof.

But now the top two-thirds of Figure 33 is precisely the crossing RV ∗⊗V,W = (RV ∗,W ◦
idV ) ◦ (idV ∗ ⊗RV,W ) (cf. Proposition 5.12)! So all we want is

RV ∗⊗V,W ◦ (δ′V ⊗ idW ) = (idW ⊗ δ′V )

which is just the commutativity of the diagram

k ⊗W W ⊗ k

(V ∗ ⊗ V )⊗W W ⊗ (V ∗ ⊗ V )

δ′V ⊗idW

Rk,W =id

idW⊗δ′V
RV ∗⊗V,W

which is Proposition 4.39! �

5.6. Deframing.

All that remains now is (R1). Recall in Remark 2.9 that we mentioned that (R1)
differs from the other moves in that it contains ‘non-trivial’ content; that is, it removes a
‘3D’ twist from the 2D diagram. In fact, we will see in the next section that our functor
F does not in general satisfy (R1), much as the Kauffman bracket does not satisfy
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(R1) (but only up to a scalar). Our functor F is therefore a well-defined invariant of
(coloured) framed oriented tangles, but not yet of unframed oriented tangles. In order to
obtain an invariant of unframed tangles we will have to use the approach of ‘deframing’
as previously used in Section 2.3.3 and for the Khovanov homology (Section 3.8.1).

5.7. Jones polynomial.

5.7.1. Our objective now is to show how the Jones polynomial may be recovered from
this approach and the representation theory of U = Uq(sl2).

Definition 5.17. (cf. Lemma 4.26) In this subsection, let V denote the (unique)
irreducible U-module of dimension 2 with highest weight q; this is also known as the
standard representation of Uq(sl2). With respect to a basis {v0, v1} of weights q, q−1

respectively, E,F,K ∈ U respectively act as

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, K =

(
q 0
0 q−1

)
Since we are only interested in uncoloured tangles (Section 5.4), we assign to each
component of every tangle this standard module V .

The first order of business is certainly to compute RV,V with respect to the standard
basis {v0 ⊗ v0, v0 ⊗ v1, v1 ⊗ v0, v1 ⊗ v1} of V ⊗ V . We have

Lemma 5.18. With respect to the standard basis {v0 ⊗ v0, v0 ⊗ v1, v1 ⊗ v0, v1 ⊗ v1},
RV,V acts as

RV,V =


q−1/2 0 0 0

0 0 q1/2 0

0 q1/2 q−1/2 − q3/2 0

0 0 0 q−1/2


Proof. Straightforward verification on each of the basis elements. �

Together with evV , δV , ev′V , δ
′
V which have all been defined explicitly, as well as all

the preceding discussion, we now obtain a well-defined invariant of framed tangles.

Now we can consider what happens under (R1).

Lemma 5.19. The LHS of (R1) (over-crossing) is, as an endomorphism of V , scalar

multiplication by q−3/2. Similarly, the same diagram as in (R1) but with the over-

crossing replaced by an under-crossing acts as scalar multiplication by q3/2.

Proof. Straightforward verification on each of the basis elements v0, v1. �
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5.7.2. However, recall that the Jones polynomial (and Kauffman bracket) are defined
only on links, and not tangles. Since a link is essentially a tangle with no endpoints,
our functor F assigns to each link a U -linear, or essentially just a C-linear map from
k = C to k = C, which is nothing but a scalar in C depending on the parameter q.
Equivalently, we may view this as a C(q)-linear map from k = C(q) to C(q), which is
nothing but a scalar in C(q). The value of this scalar is then the value of the invariant
that we assign to each link.

We now go through with the deframing process:

Proposition 5.20. Given any oriented link diagram D, the quantity

J ′(D) := (q3/2)n+(D)−n−(D)F (D)

is a well-defined invariant of oriented links.

5.7.3. In fact, the claim now is that this invariant J ′ is, up to a cosmetic replacement
of q by −q, precisely the Jones polynomial that we have defined in Section 2!

From Proposition 2.23, we need only check two things: the value assigned to n closed
loops, and that the skein relation is satisfied.

Lemma 5.21. A single closed loop is assigned the value (q + q−1); more generally, n
closed loops are assigned the value (q + q−1)n.

Proof. For a single loop, it suffices to check that ev′V ◦ δV (or evV ◦ δ′V ) acts as the
scalar (q+ q−1), which is straightforward. The case of multiple loops is immediate. �

Lemma 5.22. We have the following ‘local’ relation:

Figure 34. Skein relation for F .

that is, we have the equality of endomorphisms on V ⊗ V
q1/2R−1

V,V − q
−1/2RV,V = (q − q−1)idV⊗V

Then since the value on an entire link diagram is obtained by tensor products and
compositions which preserve the form of the above relation, we obtain the desired skein
relation

Figure 35. Skein relation for J ′.

(cf. Proposition 2.23).
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Proof. The verification of

q1/2R−1
V,V − q

−1/2RV,V = (q − q−1)idV⊗V

is a straightforward computation using Lemma 5.18; the second relation (for J ′) is
proved in the same way as in Figure 13. �

Remark 5.23. We see from the preceding result that, although the RV,V are constructed
so that R2 6= id, their minimal polynomial is still quadratic, and gives rise precisely to
the crucial defining skein relation.

Theorem 5.24. J ′ = J up to a change in sign of q; that is, we have recovered the
Jones polynomial from the standard representation of Uq(sl2).

Proof. As above. �
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