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Symmetry Local Global Classification

Suppose we want to study symmetry in Riemannian manifolds.

Want a definition of symmetry that:

works locally

works in great generality (not too many assumptions)

includes many examples

Suppose now we stand at a point p of a Riemannian manifold M.

To understand how M looks like around p, we may head off in any
direction v ∈ TpM by following the geodesic (think: exponential map).

What is a natural (choice-free, assumption-free) notion of symmetry at p?

Answer: If we head off in the opposite direction −v ∈ TpM, then the
manifold should ‘look the same’.
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Definition

A Riemannian manifold M is locally symmetric if around all p ∈ M, there
is a local isometry sp whose differential at p is −id.
Such a local isometry necessarily reflects the geodesics through p.

Definition

M is (globally) symmetric (called a symmetric space) if the local
isometries sp may all be taken to be global isometries, i.e. extended to the
whole M.

(In this talk, all our Riemannian manifolds are WLOG connected.)
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A sea of examples...

Example

Euclidean space Rn and sphere Sn with their usual metrics and the
obvious reflection about each point.

Projective space RPn, as Sn/{±1}.
Compact Lie group G which must have a bi-invariant metric, with the
reflection g 7→ g−1.

Hyperbolic space RHn: in the hyperboloid model, one can check the
reflection about any point p (w.r.t. the Lorentzian inner product on
Rn+1) can be taken as sp.

The Grassmannian G (k , n) of k-dim subspaces of Rn: for each k-dim
subspace E the reflection sE acts as 1 on E and −1 on E⊥.
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Natural question: how does local symmetry relate to curvature?

Theorem (Cartan)

M is locally symmetric ⇐⇒ it has parallel curvature tensor, i.e. ∇R = 0.

Proof sketch

(⇒): If M is locally symmetric, then
dsp

(
(∇XR)(Y ,Z ,W )

)
= (∇dspXR)(dspY , dspZ , dspW )

which since dsp = −id implies (∇XR)(Y ,Z ,W ) = 0.
(⇐): This is harder. Idea: exp is a local diffeomorphism, so we can
transfer the map −id on TpM to M, and suffices to show this is an
isometry. For this it suffices to show the curvature remains the same when
we head off in both directions, and for this we use radial coordinates with
∇∂rR = 0.

We see that locally symmetric spaces can be viewed as a generalisation of
space forms.
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From local to global

Next natural question: when is a locally symmetric space globally
symmetric?

The key point is the extension of the local isometries sp to global
isometries, and the key idea is we can extend them along geodesics.

So the obstructions are:

Enough geodesics to extend the isometries along: M should be
geodesically complete (by Hopf-Rinow theorem, ⇐⇒ metrically
complete)

Independence of path used to extend the isometries: M should be
simply connected.

Theorem (Cartan-Ambrose)

M is locally symmetric + complete + simply-connected =⇒ M is
globally symmetric.
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Remark

One can view the preceding results of Cartan and Ambrose as applications
of the Cartan-Ambrose-Hicks theorem, which gives existence of
local/global isometries from assumptions about curvature.

In the same vein one obtains the classification of space forms which are
complete + simply-connected (Sn,Rn,RHn).

These are all in the same circle of ideas.
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Aim: classify (globally) symmetric spaces M.

First properties of symmetric spaces:

Lemma

If M is a symmetric space, then

1 M complete.

2 M homogeneous.

Proof sketch

1 Use the reflections sp (which reflect geodesics) to extend geodesics
indefinitely.

2 For any two points p, q, connect them by a geodesic, and take the
reflection about the midpoint sm.
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Given any symmetric space M, consider its universal cover M̃.

M̃ is locally isometric to M, hence locally symmetric; it is also complete; it
is simply-connected. Hence we know that M̃ is globally symmetric.

In fact, conversely:

Proposition

M symmetric ⇐⇒ M = M̃/Γ with Γ discrete and centralising the group
of isometries of M̃ generated by transvections (in general, this will just be
the identity component of the group of isometries).

Proof sketch

The proof requires the theory of the simply-connected M̃.

In other words, the classification of symmetric spaces is essentially reduced
to the simply-connected case.
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Let M be a simply-connected symmetric space. We saw that M is
homogeneous. Fix a point p ∈ M.

Proposition

G := Iso(M) is a Lie group (Myers-Steenrod theorem);
K := Isop(M), the isotropy/stabiliser group at p, is compact;
M ∼= G/K.

We will now try to describe M as much as possible in terms of G .

There are two pieces of data:

1 the symmetric property;

2 the Riemannian structure.
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1 The symmetric property:

sp is an element of G , and it is an involution. We get the involutions:
Adsp =: σ : G → G
Adsp =: s : g → g

Proposition

(Gσ)◦ ⊆ K ⊆ Gσ. In particular, if k is the Lie algebra of K, then
g = k⊕ p, with k, p the 1,−1-eigenspaces of s on g respectively.

Proof sketch

For any k ∈ K , k and σ(k) = spks
−1
p have equal differentials at p, hence

k = σ(k), so K ⊆ Gσ.
If g ∈ Gσ, then by definition it commutes with sp and hence preserves the
fixed-point set of sp. So if g ∈ (Gσ)◦ can be connected to the identity
e ∈ G , then g must fix p, i.e. g ∈ K , so (Gσ)◦ ⊆ K .

Upshot: do not have to work with K , but just an involution σ of G , or s
of g . (K is just the fixed points of this involution.)
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2 The Riemannian structure.

With M ∼= G/K and g = k⊕ p, we may view p ∼= TpM.

K acts faithfully on TpM (by the differential at p)

=⇒ k acts faithfully on p ([k, p] ⊆ p).

The Riemannian metric g on TpM is K -invariant

=⇒ gives an inner product B on p, which is adk-invariant .
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To summarise:

Proposition

Given a symmetric space M ∼= G/K, we obtain the data (g, s,B):

A real Lie algebra g;

An involution s of g with ±1-eigenspace decomposition g = k⊕ p;

An adk-invariant inner product B on p.

Remark

We may also view g as the Lie algebra of Killing fields on M; k the Killing
fields vanishing at p; p the infinitesimal transvections, which are the
differentials of the one-parameter-subgroups of transvections (translations
along geodesics).
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Of course, the main point is that the data (g, s,B) is sufficient to
determine the simply-connected symmetric space M.

Proposition

Given (g, s,B), we obtain a simply-connected symmetric space M.
Hence there is a correspondence between simply-connected symmetric
spaces M and the data (g, s,B).

Proof sketch

Let G be the simply-connected Lie group with Lie algebra g, σ an
involution of G obtained from s, K the connected Lie subgroup with Lie
algebra k.
Then take M = G/K ; the inner product B gives the Riemannian structure
on M, and σ makes M a symmetric space (for a homogeneous space,
having one reflection sp is enough, since we may take sg(p) = g ◦ sp ◦ g−1).
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Towards classification

Now we want to classify (g, s,B).

The crowning achievement of Lie theory is the complete classification of
complex semisimple Lie algebras g (by Cartan and others).

Definition

g semisimple ⇐⇒ its Killing form is non-degenerate ⇐⇒ it is a direct
sum of simple (no proper ideals) Lie algebras

Theorem

All the complex simple Lie algebras are:

sl(n), so(n), sp(2n)

one of finitely many low-dimensional exceptions.
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The complex case is simpler as C is algebraically closed, in particular there
is no notion of ‘positive-definite’, ‘negative-definite’, etc.

For real semisimple Lie algebras g, one first considers g⊗ C which is
complex semisimple, and g is called a real form of g⊗ C. One can then
classify the real forms of the complex semisimple Lie algebras.

Proposition

Every complex semisimple Lie algebra has a unique compact real form (Lie
algebra of a compact Lie group), which is also the unique real form with
negative definite Killing form.
The other real forms are called noncompact.

Every real semisimple Lie algebra g has a unique (up to conjugation)
Cartan involution θ, with corresponding Cartan decomposition into
±1-eigenspaces g = k⊕ p.
The Killing form is negative-definite on k, positive-definite on p, and k, p
are orthogonal.
For the compact real forms, the Cartan involution is trivial, g = k.
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Theorem

All the real simple Lie algebras are:

compact simple real forms: su(n), so(n), sp(2n)

noncompact simple real forms:
sl(n,R), su(p, q), su∗(2n), so(p, q), so∗(2n), sp(2n,R), sp(p + q)

(noncompact) complex simple Lie algebra viewed as real

finitely many low-dimensional exceptions.
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We want to classify (g, s,B). For arbitrary real Lie algebra g, there is no
good classification.

However, it comes with an inner product B!

This is reminiscent of semisimple ⇐⇒ non-degenerate Killing form, and
we should try to compare the two.

Theorem

Every (g, s,B) (g = k⊕ p) can be decomposed into a direct sum of
(gi , si ,Bi ) (gi = ki ⊕ pi ), each of which is of one of 3 types:

(Euclidean) [pi , pi ] = 0.

(Compact irreducible) gi semisimple, ki acts irreducibly on pi , the
Killing form κgi is negative-definite on pi , and Bi is a -ve multiple of
κgi .

(Noncompact irreducible) gi semisimple, ki acts irreducibly on pi , the
Killing form κgi is positive-definite on pi , and Bi is a +ve multiple of
κgi .
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Proof sketch

Key ideas:

First study the Killing form κg:
k, p are orthogonal, and negative-definite on k.

Next compare B and κg on p: suppose they are represented by matrices
[B], [κg], then we get the symmetric matrix A = [κg ][B]

−1 representing an
endomorphism of p.
A has all real eigenvalues. Take the A-eigenspace decomposition of p (and
then further decompose into irreducible subspaces for the action of k on p).
The zero-eigenspace corresponds to Euclidean type;
the negative eigenspaces corresponds to compact irreducible type;
the positive eigenspaces corresponds to noncompact irreducible type.

The facts about κg at the start show non-degeneracy of Killing form,
hence semisimplicity of gi , for the compact and noncompact types.
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Corollary

For a symmetric space M with data (g, s,B), we obtain a corresponding
decomposition into a product of irreducible symmetric spaces M = ×iMi .

Remark

The Euclidean type ([pi , pi ] = 0) corresponds to Euclidean space (with
canonical metric).
Apart from this factor of Euclidean space, we are reduced to the g
semisimple and (g, s,B) irreducible setting.

Remark

The requirement that ki act irreducibly on pi is reminiscent of the de
Rham decomposition theorem, in which a manifold is similarly decomposed
according to the irreducible subspaces of the action of holonomy on the
tangent space. This is another less direct but more geometric way to
understand such a decomposition.
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One of the most striking features of the theory is a duality between the
compact and noncompact types.

Definition (Cartan duality)

Given (g, s,B), g = k⊕ p,
the dual (g∗, s∗,B∗) is defined by

g∗ = k⊕ ip ⊂ g⊗ C,
s∗ the obvious restriction of s ⊗ C,
B∗(iX , iY ) = B(X ,Y ) for X ,Y ∈ p.

One can check that this interchanges compact and noncompact irreducible
types.
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Finally, the fact that we are in g semisimple + Cartan duality allows us to
obtain:

Theorem (Classification of irred. (g, s,B))

All the irreducible (g, s,B) are listed below.
Type 1 is dual to type 3, type 2 is dual to type 4.
Type g s B

1 (compact) compact simple
real form

(determined by du-
ality from type 3)

-ve multiple
of κg

2 (compact) h ⊕ h (h compact
simple real form)

(X ,Y ) 7→ (Y ,X ) -ve multiple
of κg

3 (noncom-
pact)

noncompact sim-
ple real form

unique Cartan in-
volution θ

+ve multi-
ple of κg

4 (noncom-
pact)

complex simple Lie
algebra viewed as
real

(determined by du-
ality from type 2)
complex conjuga-
tion over compact
real form

+ve multi-
ple of κg
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Corollary

The classification of simply-connected symmetric spaces is equivalent to
the classification of (compact and noncompact) real forms of Lie algebras!
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Theorem (Classification of irred. simply-connected symmetric spaces)

Type g k M = G/K

1
(com-
pact)

compact
simple real
form

(TBD next slide) compact homogeneous
space (TBD next slide)

2
(com-
pact)

h ⊕ h (h
compact
simple real
form)

h∆ compact Lie group H =
SU(n), SO(n),Sp(2n)
with bi-invariant metric

3
(non-
com-
pact)

noncompact
simple real
form

unique compact
k in Cartan de-
composition (TBD
next slide)

noncompact homoge-
neous space (TBD next
slide)

4
(non-
com-
pact)

complex
simple Lie
alg. viewed
as real

compact real form HC/H=SL(n,C)/SU(n),
SO(n,C)/SO(n),
Sp(2n,C)/Sp(2n)
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Types 2,4 correspond to compact Lie group (with bi-invariant metric).

Recall there is a classification of all noncompact real forms, and the
Cartan involution/decomposition is unique. This allows us to completely
classify types 1,3.

Theorem (Classif. of irred. simply-connected symmetric spaces
(cont.))

Type 1 (compact) Type 3 (noncompact)

SU(n)/SO(n) SL(n,R)/SO(n)

SU(p + q)/S(U(p)× U(q)) SU(p, q)/S(U(p)× U(q))

SU(2n)/Sp(2n) SU∗(2n)/Sp(2n)

SO(p + q)/SO(p)× SO(q) SO(p, q)/SO(p)× SO(q)

SO(2n)/U(n) SO∗(2n)/U(n)

Sp(2n)/U(n) Sp(2n,R)/U(n)

Sp(p + q)/Sp(p)× Sp(q) Sp(p, q)/Sp(p)× Sp(q)
and finitely many exceptional ones of ‘low’ dimension.
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Example

Type 1 (compact) Type 3 (noncompact)

SO(n+ 1)/SO(n)× SO(1):
sphere Sn

SO(n, 1)/SO(n) × SO(1):
hyperbolic space RHn

SO(p+ q)/SO(p)× SO(q):
real Grassmannian

SO(p, q)/SO(p) × SO(q):
hyperbolic Grassmannian

SU(p+q)/S(U(p)×U(q)):
complex Grassmannian

SU(p, q)/S(U(p) × U(q)):
complex hyperbolic Grass-
mannian

In general one sees that the Cartan duality tends to interchange ‘usual’
spaces and hyperbolic spaces.

Observe that sphere has constant positive sectional curvature while
hyperbolic space has constant negative sectional curvature, etc.

This tends to suggest the compact/noncompact classification/Cartan
duality may have a deeper geometric meaning.
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Theorem

If M is compact/noncompact/Euclidean type, then its sectional curvature
is everywhere ≥ 0/≤ 0/= 0.
Cartan duality flips the sign of the sectional curvature.

Proof sketch

Idea: show by a (technical) computation that R(X ,Y )Z = −[[X ,Y ],Z ]
and hence the sectional curvature for X ,Y orthonormal is, with B = λκg,

sec(X ,Y ) = λκg([X ,Y ], [X ,Y ]);
now [X ,Y ] ∈ k and use negative-definiteness of κg on k.

Theorem

If M is compact/noncompact irreducible (or Euclidean), then M Einstein
with Einstein constant > 0/ < 0 (or 0).

Proof sketch

The Ricci (1,1)-tensor and all its eigenspaces are K -invariant, so M being
irreducible means there can be only one eigenspace, i.e. M is Einstein.
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Thank you!
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